
http://localhost:7777/d2sv-sdk/23.4.0/ 1/176

D2 Smartview SDK
version: 23.4.0

http://localhost:7777/d2sv-sdk/23.4.0/ 2/176

Table of contents:
Documentum D2 Smartview SDK - 23.4.0

How to prepare and start with the development environment
1. Download the developer tools for your OS:
2. Install the developer tools for your OS
3. Create the development workspace:
4. Get familiar with Workspace assistant
5. Create a plugin project:
6. Getting started with SDK development
7. Start coding

Architecture
Technology

Setup SDK workspace in IDE
Preface

Steps to setup workspace in IntelliJ IDE
Steps to setup workspace in Eclipse IDE

Debugging D2 Smartview UI
How to setup?

Extending/Overriding D2FS service through Service Plugin
Custom Widget Type

Custom shortcut type in D2
Delta Menus in D2

MenuContextDetailRelations(Relations)
MenuContextDetailRenditions(Renditions)
MenuContextDetailVersions(Versions)
MenuContext(Action Toolbar)
MenuNewObject(+ Menu)
MenuUser(User Menu)
MenuContextVD(VDoc Action Toolbar)
MenuContextTasksList(Tasks)
MenuContextTaskDocument(Task Documents Actions Toolbar)
MenuContextWorkflowOverview(Workflow Actions Toolbar)
MenuContextCollection(Collections)

http://localhost:7777/d2sv-sdk/23.4.0/ 3/176

MenuContextCollectionItems(Collections Items Action Toolbar)
Sub menu contexts which are used for lifecycle/workflows/mass update/vdoc actions

MenuDocumentLifeCycle (Lifecycle sub menus)
MenuDocumentWorkflow (Workflow sub menus)
MenuToolsMassUpdate (Mass update sub menus)
MenuContextVDAddChildOption(Add Child submenu in VDoc action toolbar)
MenuContextVDReplaceChildOption(Replace Child submenu context in VDoc action toolbar)
MenuContextTaskPriority(Change task priority sub-menu in Tasks toolbar)

Defining the delta changes in the xml
Icons in D2 Smartview

Specification
How to use an icon
Sample non-interactive icon
Sample action icon

Upgrading Documentum D2 Smartview SDK to the latest version
Steps to update existing workspace to new version SDK.
Testing workspace upgrade and update all plugins in the workspace
Effect of workspace update
Troubleshooting SDK Update

Set form mode for D2FS dialog
Custom Dialogs
Workspace & Assistant

What is a workspace?
What is the Assistant?

Creating a plugin
Add Smartview application scope perspective
Add smartview UI support to an existing plugin project
Remove a plugin from workspace
Add D2-REST controller support to a plugin project
Build all plugins in the workspace
Checkout documentation
Checkout samples
Add smartview shortcut behavior
Add smartview list tile

http://localhost:7777/d2sv-sdk/23.4.0/ 4/176

Add smartview shortcut tile
Add D2FS dialog to a plugin
Add new metadata view to plugin
Add new task details view to plugin
Packaged Samples

List of samples
D2 Admin-Groups Sample

Instruction to try out the sample
Source code structure

D2SV client to server logging
Instruction to try out the sample
Source code structure

D2SV Custom Dialogs(D2FS) sample
Instruction to try out the sample
Source code structure

D2SV Read-Only Permission View Sample
Instruction to try out the sample
Source code structure
Files and their purpose
REST Implementations
View permission menu configuration in back-end and its display & execution on the front-end
The side-panel dialog that displays permissions

D2SV Custom Widget Type Tile
Instruction to try out the sample
Source code structure
Files and their purpose

Custom Table Cell View sample
Instruction to try out the sample
Source code structure

D2SV Object On Click Sample
Instruction to try out the sample
Source code structure

Open a cabinet/folder in Doclist
Instruction to try out the sample

http://localhost:7777/d2sv-sdk/23.4.0/ 5/176

Source code structure
Action icons catalog

D2 Smartview icons
CSUI icons
SVF icons

D2FS REST services developer guide
Understanding D2SV plugin project

Plugin project layout
Files and their purpose

Where to start?
Overview
Context

Factory
Fetchable Factory
Configurable Factory
Detached Objects
Permanent Objects
Temporary Objects
Factory Life-Cycle
Methods

getObject(factory, options): object
getCollection(factory, options): object
getModel(factory, options): object
hasObject(factory, options): boolean
hasCollection(factory, options): boolean
hasModel(factory, options): boolean
clear(options): void
fetch(options): Promise
suppressFetch(): boolean

Properties
fetching: Promise
fetched: boolean
error: Error

Events

http://localhost:7777/d2sv-sdk/23.4.0/ 6/176

'before:clear', context
'clear', context
'request', context
'sync', context
'error', error, context
'add:factory', context, propertyName, factory
'remove:factory', context, propertyName, factory

Context Fragment
Details
Methods

constructor(context)
fetch(options): Promise
clear(): void
destroy(): void

Properties
fetching: Promise?
fetched: boolean
error: Error

Events
'request', context
'sync', context
'error', error, context
'add:factory', context, propertyName, factory
'before:clear', context
'clear', context
'destroy', context

PageContext
Plugins

CSS
Load CSS bundle

styleLoad(require, bundleName, separateRTLCSS?)
I18n

Accept-Language in AJAX Calls
RequireJS

http://localhost:7777/d2sv-sdk/23.4.0/ 7/176

Changes
pkgs mergeable
Attribute data-csui-required
rename map
Merged module configuration
moduleConfig method

Documentum D2 Smartview SDK - 23.4.0
How to prepare and start with the development environment

1. Download the developer tools for your OS:
2. Install the developer tools for your OS
3. Create the development workspace:
4. Get familiar with Workspace assistant
5. Create a plugin project:
6. Getting started with SDK development
7. Start coding

http://localhost:7777/d2sv-sdk/23.4.0/ 8/176

Documentum D2 Smartview SDK - 23.4.0
The D2 Smart View SDK consists of sources, binaries, documentation, and samples for -

D2 Smartview UI extension enviornment.

D2-REST services extension enviornment.

D2 plugin development enviornment.

It also includes a few tools to create and maintain a development workspace.

With the D2 Smart View SDK you can build enterprise-ready software components for Documentum D2
Smartview runtime to cater custom business needs.

Out of the box, D2 Smart View landing page looks like:

How to prepare and start with the development environment

1. Download developer tools

2. Install developer tools

http://localhost:7777/d2sv-sdk/23.4.0/ 9/176

3. Create the development workspace

4. Get familiar with SDK tools

5. Create a plugin project

6. Start coding

1. Download the developer tools for your OS:

2. Install the developer tools for your OS

JDK - JDK is required to compile Java code present within a development
workspace.
 Use JDK 17 or later.
 See https://openjdk.java.net
Maven - Apache maven is the secondary build tool used in this SDK development
workspace.
 Recommended version is 3.8.2. A different version may not be fully
compatible.
 See https://maven.apache.org
NodeJS - JavaScript VM to execute the SDK tools, build tools and to run the
development web server for UI code.
 Recommended version is 16 LTS. A different version may not be fully
compatible.
 See http://nodejs.org.
Grunt - JavaScript task runner for building and testing UI code.
 See http://gruntjs.com. Nothing to be downloaded from this URL though.

JDK - Run installer. Set the JAVA_HOME path variable to point to the JDK root
directory.
Maven - Unzip & extract to a directory. Set MAVEN_HOME environment variable
pointing to the directory.
 Update PATH variable accordingly so that Maven commands can be executed
from command-line/terminal.
NodeJS - Install the package for your OS. Set NPM_HOME path variable pointing to
the NodeJS
 installation directory. Update PATH variable so that Node & NPM commands
can be executed from
 command-line.
 It is recommended to avoid installing NodeJS under 'Program Files' as

http://localhost:7777/d2sv-sdk/23.4.0/ 10/176

3. Create the development workspace:

4. Get familiar with Workspace assistant

Check out the Workspace assistant. It's a good idea to familiarize yourself with the general aspects of
the SDK, this can be done later though.

doing that has been known to create
 problem some times.
NPM - Update the NPM module management tool to the latest version:
 npm install -g npm@latest

Grunt - Install the command line task runner client as a global NPM module
 npm install -g grunt-cli

1. Extract the SDK
2. Open a command prompt at the extracted folder

Execute batch script ws-init.bat
>ws-init.bat

It will take a while to fully initialize the workspace.
Once initialization completes successfully, the workspace assistant starts
automatically. Select "Check out documentation" option to open documentation in default
browser.

The directory where SDK was extracted becomes the root of the development workspace.
It doesn't require to run ws-init.bat inside the initialized workspace again, unless
some other instructions specifically says to do so.
If you want to run the workspace assistant anytime later, open a command
prompt/terminal at workspace root directory and run
>npm start

Select "Nothing", to terminate the workspace assitant, if wanted.

To access the documentation without the workspace assistant, you can run the following
command in a command prompt/terminal at the workspace root.
>npm run documentation

http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_00_ws_overview
http://localhost:7777/d2sv-sdk/23.4.0/general/architecture

http://localhost:7777/d2sv-sdk/23.4.0/ 11/176

5. Create a plugin project:

6. Getting started with SDK development

If you are a new SDK developer, you can check out this documentation to get started.

7. Start coding

Check out the API documentation and start coding as per business requirement.

Open command prompt at workspace root and run
>npm start

Select "Create a new plugin project" from the workspace assistant options.
Follow on-screen instruction and anser questions to create your first plugin project.
Once done, type and run-
>npm run build

Or, alternatively run the workspace assistant again and select "Build all plugins in
this workspace" option.
This will build all projects in the workspace

http://localhost:7777/d2sv-sdk/23.4.0/getting_started
http://localhost:7777/d2sv-sdk/23.4.0/api_overview

http://localhost:7777/d2sv-sdk/23.4.0/ 12/176

Architecture
A simplified representation of the D2 Smartview(D2SV) runtime.

A central component of the runtime is D2 Plugins a.k.a D2FS Plugins. A D2 Plugin is loaded dynamically
in the D2SV Ecosystem and it can primarily augment functions of D2 Foundation Services(D2FS).

The D2SV SDK API is built around the same D2 Plugins architecture and additionally it can augment
functions of D2SV UI & D2FS-REST runtime.

The SDK deals with hybrid Maven + NodeJS project which has both Java & Javascript code along with
other static resources organized in a certain structure. Upon build, the SDK compiles and packages the
built output into a Jar. This Jar file can then be dropped inside the lib folder of a D2 Smartview
runtime. The D2SV runtime loads the pluggable components from within the Jar dynamically.

Technology

http://localhost:7777/d2sv-sdk/23.4.0/ 13/176

The D2 Smartview is a web application and requires a hybrid middleware runtime. JVM runs the Java
written back-end code and an Internet browser's Javascript VM runs the front-end. All the
communication between FE & BE happens through AJAX request-response.

The Java based back-end uses the Spring WebMVC Framework, configured to run in an application
container, along with other proprietary and open-source libraries.

The Javascript front-end uses Backbone & Marionette UI framework along with jQuery, RequireJS,
Underscore, Handlebars etc. libraries.

http://localhost:7777/d2sv-sdk/23.4.0/ 14/176

Setup SDK workspace in IDE

Preface

All D2SV plugin projects are made of Java & Javascript source codes. Naturally the project setup also
has to be hybrid to compile and package all parts of the source code. This is the reason the SDK uses a
mixed tooling approach towards the same.

All the plugins inside the workspace, are layed out in a Maven project structure where the pom.xml
found at the workspace root directory serves as the aggregator-parent and each plugin is linked to it as
Maven module.

The NodeJS specific portion does not require a parent-child relationship between the plugins and the
workspace. However to optimize dependency management, the workspace declares itself as a NodeJS
project through its

package.json and each plugin in turn uses directory shortcuts to refer to the same set of dependencies
even though the plugin declares a separate NodeJS project for its Javascript code through package.json

found in its src/main/smartview directory.
While building, Maven is used as the primary tool to trigger it. Internally Maven uses maven-antrun-
plugin to execute NodeJS script through shell and that builds the Javascript portion.

Any IDE that works with Maven projects, can recognize this hybrid setup. All that it takes is the support
to be able to import a Maven project from existing source code.

TIP

Before trying any of the following steps to setup IDE, make sure to either create a plugin project or
extract a packaged sample in the SDK workspace by running either Create a plugin project or
Checkout some samples option from Workspace Assistant.

Steps to setup workspace in IntelliJ IDE

http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_01_create.plugin
http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_08_extract.sample
http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_00_ws_overview

http://localhost:7777/d2sv-sdk/23.4.0/ 15/176

Select File -> New -> Project from Existing Sources from menu.

Note. If starting with a fresh IDE installation select Import Project option from welcome screen.

In Select File or Directory to Import dialog, locate and select pom.xml from the workspace root.

In Import Project from Maven dialog, keep the default values and deselect Search for projects
recursively checkbox if it is selected. Then, click Next button to go to next screen.

In the current screen select the checkbox against a group-id and artifact-id combination that
correctly represents the workspace root pom. By default it may look something like
com.opentext.d2.smartview:D2-Plugin-Projects:1.0.0. After selection, click Next button to proceed to
the next screen.

Select an available JDK to use for the imported projects and click Next to proceed.

In current screen keep default values for Project name and Project file location input fields and
click Finish to start import.

Note. It might ask whether to open the project in current window or new window, please select an
appropriate option. New window is could be a preferred option.

After the project import completes, it might take a while for the IDE to index files from the
workspace. To cut short on the indexing time, it is advised to mark all directories from workspace
root except plugins(or whichever directory you chose to store plugins) as Excluded.

INFO

As you keep adding/removing new plugin projects in the workspace using the workspace assistant,
the IDE automatically catches up with the change.

Steps to setup workspace in Eclipse IDE

Select File -> Import from menu.

In Import dialog, expand Maven and select Existing Maven Projects and click Next.

In Import Maven Projects dialog, Click Browse... button beside the Root Directory field.

http://localhost:7777/d2sv-sdk/23.4.0/ 16/176

In Select Root Folder file-selection dialog, navigate to SDK workspace root directory and click
Select Folder button to go back to Import Maven Projects dialog.

In Import Maven Projects dialog, click Select All to select all discovered projects. Then click Finish
to close the dialog and start importing the projects.

Once the project import completes, right-click on root project's pom.xml and select Run as ->
Maven build from the menu to open Edit Configuration dialog.

In Edit Configuration dialog type clean install in Goals field then click Run button to start
building the plugins in the workspace.

CAUTION

Eclipse is unable to automatically detect plugin projects added to/removed from the workspace
using the workspace assistant.

To detect newly added project, in Eclipse Project Explorer

On the root project, right click -> Refresh.

Select the plugins folder(or whichever folder you're using to store plugins) and select Right click -
> New -> Project

In New Project dialog, select General -> Project and click Next.

In New Project dialog, deselect Use default location checkbox and click Browse

In Select Folder dialog, navigate inside the root folder of newly created plugin project on disk and
click Select Folder button

In New Project dialog, copy the last part of path value from Location field and paste it into Project
name field.

Select the chekcbox Add project to working sets and select value D2-Plugin-Projects for the field
Working sets then click Finish to close the dialog.

Once the project creation completes, in Project Explorer of Eclipse, expand the plugins(or
whichever folder you're using) folder and gesture Right-click -> Configure -> Convert to Maven
Project to finish setting up the new plugin project.

To detect removed project, in Eclipse Project Explorer

http://localhost:7777/d2sv-sdk/23.4.0/ 17/176

Gesture Right-click -> Maven -> Update Project on the root project's pom.xml

In the Update Maven Project dialog, deselect every project except the root one and click OK

If the above steps do not automatically remove the plugin project entry, then you can safely Right-
click -> Delete the project.

http://localhost:7777/d2sv-sdk/23.4.0/ 18/176

Debugging D2 Smartview UI
D2 Smartview UI being written purely in Javascript, HTML, CSS has the benefit of debugging its client-
side source code directly from an Internet Browser. Debugging can happen in either mode

1. with the source code as is

2. with compiled & minifed version of the source code

In distribution, D2 Smartview front-end and back-end is packaged as a single web archive however
these two parts are very loosely coupled and communicates via HTTP request-responses.

This loosely coupled nature helps keep the front-end and back-end clearly separate even upto an extent
where these two parts are hosted and served by two different application servers. This technique is
recommended and also used by us to debug D2 Smartview UI such as we setup and configure D2
Smartview UI to make it talk to a running Smartview instance as backend and then host only the UI part
on a lightweight NodeJS server.

INFO

The following method only allows debugging client-side Javascript code. If a plugin has some
server-side component like REST-Controller, D2FS dialog, D2FS service plugin, menu confguration
etc. then the plugin has to be built and deployed on the D2 Smartview application server followed
by a server restart in order to make them available to use for the corresponding client-side code.

How to setup?

For D2SV plugin developers, the heavy lifting is already done for you. All you need is to -

1. Open to edit the server.conf.js from src/main/smartview directory of your plugin.

2. For APP_SERVER_URL property, set an appripriate URL to a running instance of D2 Smartview

E.g. http://my.domain.com:port/D2-Smartview

http://localhost:7777/d2sv-sdk/23.4.0/ 19/176

TIP

The D2-Smartview installation, which is being referred to by the URL, must be setup to
produce either relative linkrels by setting rest.use.relative.url=true in its rest-api-
runtime.properties file, or alternatively it should be configured to allow Cross-Origin requests
by setting other appropriate properties(refer to rest-api-runtime.properties.template file from
D2-Smartview distribution).

3. Save server.conf.js

4. Open a Terminal/Command Prompt in the same src/main/smartview directory of the plugin.

5. Execute command npm start

6. Navigate to URL http://localhost:6989/ui/pages/debug/app.html in a browser to start
debugging code in as-is format.

Or, alternatively navigate to http://localhost:6989/ui/pages/release/app.html to debug the
compiled & minified code. Please remember that command grunt compile from
src/main/smartview or npm run build from workspace root directory has to be executed before
you can debug the compiled and minified code.

http://localhost:7777/d2sv-sdk/23.4.0/ 20/176

Extending/Overriding D2FS service through
Service Plugin
If developer wants to create a customization which needs to override/extend the existing functionality of
a D2FS service, the developer can create custom class with the "(D2FS Services Name)Plugin.java'
which extends the D2FS service class and implements ID2fsPlugin class. For an example -

Following services can only be extended/overriden for the supported methods. Below table lists both
overidable and non-overridable methods for D2-Smartview

Services Overridable Methods Non-Overridable Methods

package com.opentext.d2.smartview.d2svdialogs.webfs.dialog;

import com.emc.d2fs.dctm.web.services.ID2fsPlugin;
import com.emc.d2fs.dctm.web.services.dialog.D2DialogService;
import com.emc.d2fs.models.context.Context;
import com.emc.d2fs.models.attribute.Attribute;
import com.emc.d2fs.models.dialog.Dialog;
import java.util.List;

public class D2DialogServicePlugin extends D2DialogService implements ID2fsPlugin {
 ...
 public Dialog validDialog(Context context, String id, String dialogName,
List<Attribute> parameters) throws Exception {
 //custom logic

 //If the following line is executed during an invocation then it becomes an
extension, otherwise it becomes an override.
 return super.validDialog(context, id, dialogName, parameters);
 }
 ...
}

http://localhost:7777/d2sv-sdk/23.4.0/ 21/176

Services Overridable Methods Non-Overridable Methods

D2CreationService

applyVdTemplate
getVDTemplates

setTemplate
getTemplates
getTemplates

updateTemplatesListwithFilter
getConvertStructureConfig
createTemplateFromServer

createProperties
getRecentlyUsedVDTemplates

getImportStructureConfigs
getRecentlyUsedTemplates

hasAnyAttachments
removeAttachments

getUIMaxSize
hasAttachments
hasAttachments

getFilteredTemplates
isAFolderOrACabinet

getTemplateFilterOptions
isNoCreationProfile

isNoContentAuthorized

D2DialogService

getOptions
getDialog

validDialog
cancelDialog

getTaxonomy
getLabels

isMemberOfGroup
getImportValuesUrl

getSubforms
getExportValuesUrl

D2PropertyService
dump

saveProperties
saveProperties

getProperties

D2WorkflowService rerunAutoActivity
resumeTask
pauseTask

setTaskPriority
updateWorkflowSupervisor

getWorkflowTemplatesByWidgetName
removeWorkflowSupportingDocuments

isTaskAcquired
getTaskMode

acquireTask
getTaskPermissions

canRejectTask
canForwardTask

canDelegateTask

http://localhost:7777/d2sv-sdk/23.4.0/ 22/176

Services Overridable Methods Non-Overridable Methods

isTaskQueueItemRead
addWorkflowSupportingDocuments
getWorkflowUsersByWidgetName

getWorkflowWorkingDocumentsCount
getWorkflowSupportingDocumentsCount

completeAutoActivity
getWorkflowAttachments

checkLifeCycle
pauseWorkflow

processTask
addNoteToTask
launchWorkflow
abortWorkflow

canAddTaskNote
delegateTask

setTaskReadState
resumeWorkflow
updatePerformer

fetchWorkflowConfig
checkAttachmentLockState

getWorkflowStatusSummary
verifyEntryCriterias
verifyEntryCriteria

launchScheduledWorkflow
acquireTaskAndGetState

getUnreadTasks
delegateTaskEx

addNoteToWorkflow
doAutoTaskAction

checkPropertyPage
checkPropertyPage
getTaskFolderLabel
canAbortWorkflow

getConfigurationsNames
getWorkflowDisplayName

checkWorkflowAliases
delegateTaskOnError

isManualAcquisitionTask

http://localhost:7777/d2sv-sdk/23.4.0/ 23/176

INFO

In case any unsupported methods are overriden by a plugin, it will be shown as warning in D2-
Smartview.log during startup of the application

Services Overridable Methods Non-Overridable Methods

D2CheckoutService

checkout
cancelCheckout

testCheckout
testControlledPrint

cancelCheckoutAll
checkoutAsNew

getNumberOfCheckoutDocument

D2CheckinService getCheckinConfig checkin

D2DownloadService

checkin
getUploadUrls
getUploadUrls
getUploadUrls

getPageServingUrl
getCheckinUrls

getDownloadUrls
getExtractUrls

getFile
setFile

hasAnyValidC2ExportAndRenditionConfig
getDefaultServerInfo
checkinAndLifeCycle

extractDcoumentProperty
getImportStructureUrls
setDocumentProperty

extractProperties
getDownloadObjectId

getFileInfo
getObjectsDownloadUrls

canPrintControlledView
getDispatchDownloadUrl

getDownloadFileDetails
isProtectedInControlledView

addRendition

http://localhost:7777/d2sv-sdk/23.4.0/ 24/176

Custom Widget Type
Developers can define custom widget types if the default set of widgets provided from OOTB D2. This
helps in developing custom views and business operation to perform

Custom shortcut type in D2

D2-Smartview landing page configuration elements like <tile> requires a type attribute to be set. By
default all "Widget type" found in D2-Config are accepted as valid values. However, while defining new
shortcuts for the landing page tile one might need to use a value that is not a "Widget type" at all or in
other words the value is not pre-defined. Additionally, while defining new application scope perspective
one might need to declare a default widget name for the corresponding perspective to use when a
direct URL based navigation is taking place in the UI.

To facilitate this, an SDK developer can create a properties file
{Plugin}/resources/strings/config/U4Landing.properties. There are two properties that can be
defined in the file -

default_widget_tags: This allows declaring new valid XML tag names to go under the <default-
widgets> section in the D2SV landing page file. Multiple comma separated values could be
specified.

shortcut_types: This allows declaring valid values for `type` attribute of <tile> . Multiple comma
separated values could be specified.

Example

If this is the content of the U4Landing.properties file, then the following hypothetical landing page
structure is accepted as valid configuration

default_widget_tags=abcd,defg
shortcut_types=custom1,custom2

http://localhost:7777/d2sv-sdk/23.4.0/ 25/176

The developer needs to register the custom widget type if needed to create widgets which can driven
through the D2-Config context matrix evaluation. To do this, developer needs to create a properties file
{Plugin}/resources/strings/config/WidgetSubtypelist.properties. This will include all the widget type
created in the format {Widget Type Name}=true

Example

If developer wants the widget to inherit the properties of some other OOTB D2 widget types, then
developer needs to prefix the parent widget type name in the format {Parent Widget Type Name}.
{Widget Type Name}=true

Example

<root>
 <space>
 <flow-layout-container>
 <content>
 <tile-container size="full">
 <tile name="one" type="custom1">
 <theme color="shade1" type="stone1"/>
 </tile>
 <tile name="two" type="custom2">
 <theme color="shade1" type="indigo1"/>
 </tile>
 </tile-container>
 </content>
 </flow-layout-container>
 </space>
 <default-widgets>
 <abcd>SOME_NAME</abcd>
 <defg>ANOTHER</defg>
 </default-widgets>
</root>

CustomWidgetType=true

DocListWidget.CustomWidgetType=true

http://localhost:7777/d2sv-sdk/23.4.0/ 26/176

If the developer want to have custom parameters as part of the custom widget type, developer needs to
add those in the properties file {Plugin}/resources/strings/config/WidgetSubtype.properties. This
will include the parameters for all the widget type created for plugin in the format {Widget type
Name}.{{Parameter name}={Default value}.

Example

In order to provide custom labels for the custom parameters which are created needs to be add in the
properties file
{Plugin}/resources/strings/actions/config/modules/widget/WidgetDialog/WidgetDialog_en.prop
erties. Entries will be in the format label_{parameter name}={display label}.

Example

CustomerCustomType.sample1 = Text1
CustomerCustomType.sample2 = Text2

label_sample1 = Sample text field 1
label_sample2 = Sample text field 2

http://localhost:7777/d2sv-sdk/23.4.0/ 27/176

Delta Menus in D2
Smart View is driven via menu configuration for operations and these menus are shown in the D2-
Config under the 'Menu Smart View' configuration. Each of the menu configuration consists of various
menu context. Developers can change default behaviour of the menu items in the various menu
contexts.

Developers can add/modify or delete each of the menu items in the respective menu context.

TIP

using the ws assistant, developers can try to create a new menu for the custom d2fs dialogs. Add
D2FS dialog to a plugin)

If the developer wants to change OOTB default menu, then developer need to create a delta menu xml
to define those changes in the following path and format.
resources/xml/unitymenu/<menu_context_name>Delta.xml .

For example: If the we want to add a new menu item in the Action Toolbar then we need to create a
delta file as follows: resources/xml/unitymenu/MenuContextDelta.xml .

Following are the currently supported menu contexts in Smart View. Each of the context are provided
with the OOTB Menus and their corresponding internal 'id' references needed for appending.

INFO

Details regarding each of the menus can be found in the D2 admin guide

MenuContextDetailRelations(Relations)

Menu item name Menu Id

Delete relationship menuContextRelationsDestroy

http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_12_add.d2fs.dialog

http://localhost:7777/d2sv-sdk/23.4.0/ 28/176

MenuContextDetailRenditions(Renditions)

Menu item name Menu Id

Export rendition menuContextRenditionsExport

Delete rendition menuContextRenditionsRemove

MenuContextDetailVersions(Versions)

Menu item name Menu Id

Properties menuContextProperties

MenuContext(Action Toolbar)

Menu item name Menu Id

Properties menuContextProperties

Copy link menuContextCopyLink

Share menuContextShare

Edit menuContextEdit

Cut menuContextCut

Copy menuContextCopy

Paste menuContextPaste

http://localhost:7777/d2sv-sdk/23.4.0/ 29/176

Menu item name Menu Id

Paste as link menuContextPasteLink

Add version menuContextAddVersion

Checkout menuContextCheckout

Cancel checkout menuContextCancelCheckout

Permissions menuContextPermissions

Print menuDocumentPrint

Download menuContextDownload

Export properties menuContextExport

Delete menuContextDestroy

Add to collection menuContextAddToCollection

Create relation menuContextRelationCreate

View native content menuDocumentViewNative

Convert to virtual document menuContextConvertToVD

Convert to virtual document menuContextConvertFolderToVD

Display outline menuNewOpenVD

Display snapshot menuNewOpenSVVDSnapshot

http://localhost:7777/d2sv-sdk/23.4.0/ 30/176

Menu item name Menu Id

Lifecycle menuContextDocumentLifeCycle

Send to workflow menuContextDocumentWorkflow

Mass update menuToolsMassUpdate

MenuNewObject(+ Menu)

Menu item name Menu Id

Add file menuNewObjNewDocument

Upload file menuNewObjImportDocument

Add folder menuNewObjNewFolder

Add cabinet menuNewObjNewCabinet

Upload folder menuNewObjImportFolderStructure

MenuUser(User Menu)

Menu item name Menu Id

User settings menuUserSettings

Help menuHelpContents

About D2 menuHelpAbout

http://localhost:7777/d2sv-sdk/23.4.0/ 31/176

Menu item name Menu Id

Sign out svMenuUserLogout

MenuContextVD(VDoc Action Toolbar)

Menu item name Menu Id

Download menuContextVDDownload

Edit menuContextVDEdit

Checkout menuContextVDCheckout

Check in menuContextSVVDCheckin

Cancel checkout menuContextVDCancelCheckout

Add child menuContextVDAddChild

Create snapshot menuContextSVVDSnapshotCreate

Convert to virtual document menuContextVDConvertToVd

Convert to simple document menuContextVDConvertToSimpleDoc

Set to version menuContextSVVDSetBinding

Replace menuContextSVVDReplaceChild

Remove menuContextSVVDRemoveChild

http://localhost:7777/d2sv-sdk/23.4.0/ 32/176

Menu item name Menu Id

Lifecycle menuContextDocumentLifeCycle

Send to workflow menuContextDocumentWorkflow

MenuContextTasksList(Tasks)

Menu item name Menu Id

Acquire menuContextAcquireTaskSV

Accept menuContextForwardTaskSV

Reject menuContextRejectTaskSV

Pause task menuContextPauseTask

Resume task menuContextResumeTask

Rerun menuContextRerunTask

Complete menuContextCompleteTask

Delegate menuContextDelegateTaskSV

Update performers menuContextUpdatePerformer

Manage supporting files menuContextManageAttachmentsSV

Change task priority menuContextTaskPriority

http://localhost:7777/d2sv-sdk/23.4.0/ 33/176

Menu item name Menu Id

Mark as unread menuContextTaskUnread

Mark as read menuContextTaskRead

Add note menuContextAddTaskNoteSV

Email to performer menuContextSVEmailPerformer

Abort workflow menuContextAbortWorkflow

MenuContextTaskDocument(Task Documents Actions Toolbar)

Menu item name Menu Id

Properties menuContextProperties

Go to location menuContextGotoLocation

Copy link menuContextCopyLink

Download menuContextDownload

Export properties menuContextExport

Edit menuContextEdit

Add to collection menuContextAddToCollection

Add version menuContextAddVersion

http://localhost:7777/d2sv-sdk/23.4.0/ 34/176

Menu item name Menu Id

Cancel checkout menuContextCancelCheckout

MenuContextWorkflowOverview(Workflow Actions Toolbar)

Menu item name Menu Id

Start workflow menuContextLaunchScheduledWorkflow

Pause workflow menuContextPauseWorkflow

Resume workflow menuContextResumeWorkflow

Change supervisor menuContextChangeSupervisor

Update performers menuContextUpdatePerformer

Email to supervisor menuContextEmailSupervisor

Email to performers menuContextEmailPerformer

Manage supporting files menuContextManageAttachmentsSV

Abort workflow menuContextAbortWorkflow

MenuContextCollection(Collections)

Menu item name Menu Id

Add items menuContextAddToCollectionItems

http://localhost:7777/d2sv-sdk/23.4.0/ 35/176

Menu item name Menu Id

Rename menuContextRenameCollection

Delete menuContextDestroy

MenuContextCollectionItems(Collections Items Action Toolbar)

Menu item name Menu Id

Properties menuContextProperties

Copy link menuContextCopyLink

Edit menuContextEdit

Add version menuContextAddVersion

Checkout menuContextCheckout

Cancel checkout menuContextCancelCheckout

Permissions menuContextPermissions

Print menuDocumentPrint

Download menuContextDownload

Export properties menuContextExport

Remove menuContextRemoveFromCollection

http://localhost:7777/d2sv-sdk/23.4.0/ 36/176

Menu item name Menu Id

Add to collection menuContextAddToCollection

Create relation menuContextRelationCreate

View native content menuDocumentViewNative

Convert to virtual document menuContextConvertToVD

Convert to virtual document menuContextConvertFolderToVD

Display outline menuNewOpenVD

Display snapshot menuNewOpenSVVDSnapshot

Lifecycle menuContextDocumentLifeCycle

Send to workflow menuContextDocumentWorkflow

Mass update menuToolsMassUpdate

Sub menu contexts which are used for lifecycle/workflows/mass
update/vdoc actions

MenuDocumentLifeCycle (Lifecycle sub menus)

Menu item name Menu Id

Dynamic display D2 lifecycle start state dynamicMenuDocumentD2LifeCycleAttach

Dynamic display of D2/DCTM state dynamicMenuDocumentD2LifeCycleNextStates

http://localhost:7777/d2sv-sdk/23.4.0/ 37/176

Menu item name Menu Id

Dynamic display of DCTM lifecycle dynamicMenuDocumentLifeCycleAttach

Detach menuDocumentLifeCycleDetach

Promote menuDocumentLifeCyclePromote

Demote menuDocumentLifeCycleDemote

Suspend menuDocumentLifeCycleSuspend

Resume menuDocumentLifeCycleResume

MenuDocumentWorkflow (Workflow sub menus)

Menu item name Menu Id

Dynamic display of D2 workflow dynamicMenuDocumentD2Workflow

MenuToolsMassUpdate (Mass update sub menus)

Menu item name Menu Id

Dynamic display D2 mass updates dynamicMenuToolsMassUpdate

MenuContextVDAddChildOption(Add Child submenu in VDoc action toolbar
)

Menu item name Menu Id

http://localhost:7777/d2sv-sdk/23.4.0/ 38/176

Menu item name Menu Id

Browse menuSVVDAddChildBrowse

Create menuVDAddChildCreate

Upload menuSVVDAddChildImport

From template menuSVVDAddChildTemplate

MenuContextVDReplaceChildOption(Replace Child submenu context in VDoc
action toolbar)

Menu item name Menu Id

Browse menuVDReplaceChildBrowse

Create menuVDReplaceChildCreate

Upload menuSVVDReplaceChildImport

MenuContextTaskPriority(Change task priority sub-menu in Tasks toolbar)

Menu item name Menu Id

Highest menuContextTaskPriorityHighest

High menuContextTaskPriorityHigh

Normal menuContextTaskPriorityNormal

http://localhost:7777/d2sv-sdk/23.4.0/ 39/176

Menu item name Menu Id

Low menuContextTaskPriorityLow

Lowest menuContextTaskPriorityLowest

Defining the delta changes in the xml

Menu item in the D2 will follow the below structure

Here we have mainly 3 part for the menu as follows

menuitem: define the menu item which will have a id attribute. The id attribute can be used to
define label and is also a unique identifier.

dynamic-action: developer can define a class which is extended from the IDynamicAction . This tag
is used to define the action that has to be performed when the menu item is clicked.

condition: developer can define condition which has to be extended from ICondition

TIP

Depending on the class custom attributes can be passed to the tag for both dynamic-action and
condition

In order to define the menu item we need to understand the root tag as delta tag. Following are the
operations that can done on the menu item

insert - This will be used to insert a new menu item. This tag mandates attributes such as
position-before or position-after which will define menu id before or after which the current

<menuitem id="MenuId">
 <dynamic-action class="ClassName"/>
 <condition class="ClassName" equals="value"/>
 </menuitem>

http://localhost:7777/d2sv-sdk/23.4.0/ 40/176

menu item has to be placed.

append - This will be used to append menu item to the end of the menus.

modify -Requires id attribute which is a reference to any existing menu item id which has to be
modified. This can can be used to delete , insert , append and insert-before .

delete - This requires an id attribute which will refer to the menu id that has to be deleted.

insert-before - This can be used along with the modify to add new conditions.

move- This can be used to move an exiting menu by using the menu id with the attributes
position-before or position-after .

TIP

1. position-before and position-after attributes contains the menu id of other menus

2. menu id, class names for the dynamic actions and conditions can be discovered by creating
menu items in D2-Config and exporting the menus.

Find below some of the ways to use delta menus:

1. Insert new menu

<delta>
 <insert position-before="menuToolsMassUpdate">
 <menuitem id="menuContextViewPermission">
 <dynamic-action class="com.emc.d2fs.dctm.ui.dynamicactions.actions.U4Generic"
eMethod="getPermissions" eMode="SINGLE" eService="PermissionActionService"
rAction="${pluginNamespace}/dialogs/permissions/permissions.dialog:showPermissions"
rType="JS"/>
 <condition
class="com.emc.d2fs.dctm.ui.conditions.interfaces.IsMultipleSelection"
equals="false"/>
 <condition class="com.emc.d2fs.dctm.ui.conditions.options.IsPluginActivated"
value="${pluginName}"/>
 </menuitem>
 </insert>
 <insert position-before="menuToolsMassUpdate">
 <separator/>
 </insert>
</delta>

http://localhost:7777/d2sv-sdk/23.4.0/ 41/176

2. Modify an existing menu with new conditions

Overriding the default post action behavior

There are basically 3 types of post action that can be performed on the selected objects after the
completion of the dialog service operation. Those operation can be set as an attribute on the new
custom menus created which will define as the default behavior

1. Locate content and refresh state upon action : This will locate the object and update the state of
the object selected. For example, if you are performing some operation which will move the
selected object from one location to another. Then this attribute will help the user to identify where
it is located as well as refreshing the state of the current container. Attribute used for this is
locateAndRefresh

2. Refresh state : This will refresh the state of the object selected post dialog operation. For example,
if you have performed a lifecycle operation or a property update as part of the validDialog(.) then
if you want to have the updated menus as well as values in the selected item in the widget we
would need to set this value as part fo the result. Attribute used for this is refreshCheckoutState

3. Refresh widget : This will reload the widget post the operation. Attribute used for this is
refreshWidget

Sample Code

<delta>
 <modify id="menuDocumentEdit">
 <insert-before>
 <condition class="com.emc.d2fs.dctm.ui.conditions.typeparts.IsObjectType"
value="d2c_bin_deleted_document¬d2c_bin_deleted_folder¬d2c_bin_deleted_folder_dump¬d2c_
equals="false"/>
 </insert-before>
 </modify>
</delta>

 <menuitem id="menuRefreshDialog">
 <dynamic-action
class="com.emc.d2fs.dctm.ui.dynamicactions.actions.U4ShowDialog"
 dialog="RefreshDialog"
 locateAndRefresh="false"
 refreshWidget="false"

http://localhost:7777/d2sv-sdk/23.4.0/ 42/176

INFO

1. Supported values are "true"/"false".

2. Default value if not set is false.

3. this value updated in D2-Config will override the default value given in the delta xml.

 refreshCheckoutState="true"/>
 </menuitem>

http://localhost:7777/d2sv-sdk/23.4.0/ 43/176

Icons in D2 Smartview
Like any other application, D2 Smartview also uses different icons for visual context of data, infromation
or action.

D2 Smartview uses Scalable Vector Graphic(svg) images to implement an icon. All the icons used in
D2SV can be broadly classified into

Non interactive

Used to attach a context to a piece of data or information.

Interactive a.k.a action icons

Used to represent an action

Action icons are different semantically compared to the other type in the sense that action icons are
reactive and respond to keyboard focus, blur or mosue events. Implementation wise, the SVG behind an
action icon has a certain element structure whereas the other type don't have any such restriction.

Specification

Being SVG, a D2SV icon can be upscaled or downscaled to any size to fit in a UI element's boundary,
however we recommend and follow that each SVG is defined w.r.t a view box of size 32px x 32px .

Action icons must have 3 svg sub-elements with id state , metaphor and focus . The state element
reacts to mouse position w.r.t to icon itself and changes its color accent. The metaphor element holds
the visual graphic of the icon. And the focus element reacts to keyboard focus gain, giving itself a
highlighted border.

How to use an icon

For non-interactive icons, place the svg file at any source folder location and refer to it as
background-image property in any CSS file using relative(from css file location to svg file locaiton)

http://localhost:7777/d2sv-sdk/23.4.0/ 44/176

url.

We follow a convention where an svg file is placed inside impl/images folder w.r.t to CSS file's
location where the svg image will be used.

For interactive icons, drop the svg file inside utils/theme/action_icons folder w.r.t the smartview
source code directory. Then run grunt compile in the smartview source code directory. And finally,
at the place of use (which is mostly inside node.actions.rules module), set property iconName:
'<pluginNamespace>_<svg_file_name_without_extension>' after replacing the format with
appropriate values.

Sample non-interactive icon

Sample action icon

<?xml version="1.0" encoding="utf-8"?>
<!-- Generator: Adobe Illustrator 19.1.0, SVG Export Plug-In . SVG Version: 6.00 Build
0) -->
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
 viewBox="-379 291 32 32" enable-background="new -379 291 32 32"
xml:space="preserve">
<g>
 <circle fill="#7E929F" cx="-363" cy="307" r="16"/>
</g>
<circle fill="#FFFFFF" cx="-363" cy="315" r="2"/>
<path fill="#FFFFFF" d="M-361,309c0,1.1-0.9,2-2,2l0,0c-1.1,0-2-0.9-2-2v-11c0-1.1,0.9-
2,2-2l0,0c1.1,0,2,0.9,2,2V309z"/>
</svg>

<?xml version="1.0" encoding="utf-8"?>
<!-- Generator: Adobe Illustrator 24.0.1, SVG Export Plug-In . SVG Version: 6.00 Build 0)
<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"

http://localhost:7777/d2sv-sdk/23.4.0/ 45/176

TIP

For a list of built-in action icons refer to the Catalog

 viewBox="0 0 32 32" style="enable-background:new 0 0 32 32;" xml:space="preserve">
<style type="text/css">
 .st0{fill:none;}
 .st1{fill-rule:evenodd;clip-rule:evenodd;fill:#333333;}
 .st2{fill:none;stroke:#2E3D98;}
</style>
<circle id="state" class="st0" cx="16" cy="16" r="14"/>
<path id="metaphor" class="st1" d="M22.4,12.5H9.6c-0.331,0-0.6-0.336-0.6-
0.75S9.269,11,9.6,11h12.8c0.331,0,0.6,0.336,0.6,0.75
 S22.731,12.5,22.4,12.5z
M23.53,16.5H9.685C9.307,16.5,9,16.164,9,15.75S9.307,15,9.685,15H23.53c0.378,0,0.684,0.336,0
 S23.908,16.5,23.53,16.5z M9.628,20.5h10.785c0.346,0,0.628-0.336,0.628-
0.75S20.759,19,20.412,19H9.628C9.281,19,9,19.336,9,19.75
 S9.281,20.5,9.628,20.5z"/>
<circle id="focus" class="st2" cx="16" cy="16" r="15.5"/>
</svg>

http://localhost:7777/d2sv-sdk/23.4.0/general/builtin.icons

http://localhost:7777/d2sv-sdk/23.4.0/ 46/176

Upgrading Documentum D2 Smartview SDK to
the latest version
With Documentum D2 Smartview SDK, new features will be added and delivered in each release. So,the
SDK workspace need to be updated for consuming newly delivered feature.

D2 Smartview SDK provides an automated way to update the current workspace to the latest version of
SDK.

Steps to update existing workspace to new version SDK.

Close any IDE opened in existing workspace root.

Unzip D2SV-SDK-23.4.0.zip

Copy d2sdk-maven-plugin-23.4.0.jar from following path in zip.
D2SV-SDK-23.4.0 (Archive root)/tools/

Paste the copied d2sdk-maven-plugin-23.4.0.jar in following path.
d2sv-sdk-23.2.0(Existing SDK workspace root)/tools/

Execute the following command in D2SV-SDK-23.2.0(Existing SDK workspace root) using Command
Prompt. With this command execution, current SDK workspace will be updated with latest D2-
SmartView dependencies and changes.

ws-update.bat

Wait for Success message for SDK update.

Testing workspace upgrade and update all plugins in the workspace

Execute npm start in workspace root folder in terminal application.

Choose option Build all plugins in this workspace to compile and build all plugins in the
workspace. This operation will restore all symbolic folder links in the workspace plugin. Check the
generated plugin jars in dist folder in workspace root.

Choose option Check out the documentation to open the SDK documentation and verify the
version in the documentation.

http://localhost:7777/d2sv-sdk/23.4.0/ 47/176

Deploy the generated plugin in server validating UI code and Backend code is compatible with new
version of D2 Smartview SDK.

Run the plugins in local node server for validating UI code is compatible with new version of D2
Smartview SDK.

Open the updated SDK workspace in IDE.

Effect of workspace update

Current workspace will be updated with latest 23.4.0 dependencies for UI and REST.

Documentation will be updated with latest D2 Smartview 23.4.0.

SDK infrastructure will be updated for root SDK and all plugin modules in workspace.

Backup will be created for root pom.xml and package.json with version number suffix.
(package_23.2.0.json.bak and pom_23.2.0.xml.bak)

Backup will be created for existing workspace as zip file in same directory where workspace exist. If
workspace root folder name D2SV-SDK-WORKSPACE then zip name will be D2SV-SDK-
WORKSPACE_23.4.0_bak.zip.

Troubleshooting SDK Update

Restoring Dependencies

As part of SDK upgrade, workspace root pom.xml and package.json will be regenerated with
new dependencies.

If SDK developer has added any new java dependency in pom.xml or new npm dependency in
package.json in older version, then those dependencies need to be restored again in new
version pom.xml and package.json.

For SDK developer's reference, backup created for the older version pom.xml and package.json
file.

Restoring workspace with older version of SDK

When upgrade SDK fails, D2 Smartview SDK developer can restore the SDK workspace to older
version.

http://localhost:7777/d2sv-sdk/23.4.0/ 48/176

As part of SDK upgrade, complete workspace backup is created as zip file in same directory
where workspace exist.

So that, SDK developer can restore the workspace with older version of SDK.
Steps to restore the older version of workspace

Unzip the backup zip file.

Delete the new version of d2sdk-maven-plugin.jar in tools folder and keep old
version of the same jar.

Update current root folder's path in lib.path property in root pom.xml for pointing to
older dependency. Since this zip is back of original workspace, the original workspace
path will be available in lib.path property.

Execute the ws-init.bat -fo (ws-init with force overwrite argument) command in
extracted folder using Command Prompt.

With this command execution, current SDK workspace will be restored with older
version of D2-SmartView dependencies and changes.

Later same workspace can be upgraded to new version of SDK.

Handling Java and Spring upgrade

In 23.4.0 Documentum and D2-Rest has migrated to the new version of Java v17 and Spring v6.

Tomcat server need to be upgraded to version 10.

If there was any Java code uses older Java or Spring dependencies in any of the plugin, then
build will be failing for those plugins.

SDK developer need to manually fix the compilation issues, which is caused due to Java and
Spring upgrade.

Handling SDK upgrade for excluded modules

If some plugin modules are excluded from root pom.xml, then those plugins are not
considered for SDK upgrade automation.

The upgrade for the excluded plugins in the workspace need to be done manually.

For such excluded plugins, create a new plugin and migrate the source code changes manually.

http://localhost:7777/d2sv-sdk/23.4.0/ 49/176

Set form mode for D2FS dialog
Forms in D2FS dialogs can be rendered in either editable(create) or readonly(read) mode.

When rendering a dialog form on D2 Smartview UI, this is determined by checking for the form_mode
attribute of dialog xml.

When creating a D2FS dialog, the workspace assistant prompts user to select the form_mode. The
selected value from workspace assistant is set in the dialog definition xml file <Plugins
Directory>\src\main\resources\xml\dialog\<Dialog Name>.xml .

But this can be overwritten later either by editing the dialog definition xml file or by setting form_mode
attribute for result XmlNode in buildDialog method of <Plugins Directory>\src\main\java\<Maven
Group Id>\smartview\<Plugin Name>\dialogs\<Dialog Name>.java

<dialog auto_smartview_edit_mode="false" buttons_right="false" focus="" height="500"
id="SomeDialog" initial_invalid="false" resizable="true" signoff_creation="false"
signoff_edit="false" signoff_import="false" signoff_intention_dictionary=""
signoff_intention_required="false" width="400" form_mode="create">
 <content>
 <text advancedView_required="true" condition_required="true" control="true"
id="name_field"/>
 </content>
 <buttons>
 <button action="validDialog()" id="buttonOk" isPrimary="true"/>
 <button action="cancelDialog()" id="buttonCancel"/>
 </buttons>
 <signoff_fallback_message>
 <message locale="en" value=""/>
 </signoff_fallback_message>
</dialog>

public class SomeDialog extends AbstractDialog implements ID2Dialog {
 ...
 @Override
 public XmlNode buildDialog(D2fsContext context, List<Attribute> attributes) throws
Exception {

http://localhost:7777/d2sv-sdk/23.4.0/ 50/176

In case of chained dialogs, if the chained dialog is returned as result from validDialog method of
<Plugins Directory>\src\main\java\<Maven Group Id>\smartview\<Plugin Name>\dialogs\<Dialog

Name>.java ,

form_mode attribute could be set for result XmlNode before returning it.

 ...
 XmlNode result = super.buildDialog(context, dialogFile, labelsBundle,
context.getFirstObject(), defaultValues);

 if(result == null) {
 result = super.buildDialog(context, attributes);
 }

 // Custom logic to determine formMode at run time
 String formMode = 1 == 0 ? "read" : "create";

 result.setAttribute("form_mode", formMode);

 return result;
 }
 ...
}

public class SomeDialog extends AbstractDialog implements ID2Dialog {
 ...
 @Override
 public XmlNode validDialog(D2fsContext context) throws Exception {
 ...
 XmlNode result = super.validDialog(context);

 // Custom logic to determine formMode at run time
 String formMode = 1 == 0 ? "read" : "create";

 result.setAttribute("form_mode", formMode);

 return result;
 }
 ...
}

http://localhost:7777/d2sv-sdk/23.4.0/ 51/176

The form_mode attribute for chained dialog could also be set from validDialog method of <Plugins
Directory>\src\main\java\com\opentext\d2\smartview\webfs\dialog\D2DialogServicePlugin.java

before returning the dialog.

public class D2DialogServicePlugin extends D2DialogService implements ID2fsPlugin {
 ...
 public Dialog validDialog(Context context, String id, String dialogName,
List<Attribute> parameters) throws Exception {

 // Custom logic

 Dialog dialog = super.validDialog(context, id, dialogName, parameters);

 XmlNode xmlDialog =
XmlUtil.loadFromString(dialog.getXmlContent()).getRootXmlNode();

 // Custom logic to determine formMode at run time
 String formMode = 1 == 0 ? "read" : "create";

 xmlDialog.setAttribute("form_mode", formMode);

 dialog.setXmlContent(xmlDialog.toString());

 return dialog;
 }
 ...
}

http://localhost:7777/d2sv-sdk/23.4.0/ 52/176

Custom Dialogs
The custom dialog is not a widget but more of a dialog to do a particular business operation.

What it can crete from workspace assistant

Using the workspace assistance developer can create custom dialog for the plugins created by the
developer.

Methods exposed as part of the dialog

The custom dialog exposed below three method for building and handling various action of the dialog.

buildDialog(..) : This method is responsible for building the Dialog.

validDialog(.) : validdialog is used to either chain to different dialog or to perform a business
action and return the success.

cancelDialog(.) : this method is called when user perform invalid action.

How to return Success message

There are 2 types of interactions that can be provided for the success message.

1. Alert : if the developer wants to show an alert message popup post operation.

*Sample Output :

 XmlNode result = super.validDialog(context);
 XmlNode msg = new XmlNodeImpl("message");
 msg.setValue("Processed Successfully");
 msg.setAttribute("type", "alert");
 msg.setAttribute("title", "Success");
 result.appendXmlNode(msg);

 "page-content": {
 "success": {
 "message": {

http://localhost:7777/d2sv-sdk/23.4.0/ 53/176

2. Toast : if the developer wants to show a toast message on top of the screen.

*Sample Output :

Where

message is child node of success, and it is mandatory which is having their content as Value.

type is also a mandatory key which allow either alert/toast as value.

title is an optional parameter for the type='alert' which will be displayed as the title for the
alert popup.

Overriding the default post action behavior

 "type": "alert",
 "order": 1,
 "content": "Processed Successfully"
 }
 }
 }

 XmlNode result = super.validDialog(context);
 XmlNode msg = new XmlNodeImpl("message");
 msg.setValue("Processed Successfully");
 msg.setAttribute("type", "toast");
 msg.setAttribute("title", "Success");
 result.appendXmlNode(msg);

 "page-content": {
 "success": {
 "message": {
 "type": "toast",
 "order": 1,
 "content": "Processed Successfully"
 }
 }
 }

http://localhost:7777/d2sv-sdk/23.4.0/ 54/176

There are basically 3 types of post action that can be performed on the selected objects after the
completion of the dialog service operation. Those operation can be set as an attribute to the result
before the returning in the case of validDialog(.) and cancelDialog(.)

1. Locate content and refresh state upon action : This will locate the object and update the state of
the object selected. For example, if you are performing some operation which will move the
selected object from one location to another. Then this attribute will help the user to identify where
it is located as well as refreshing the state of the current container. Attribute used for this is
locateAndRefresh

2. Refresh state : This will refresh the state of the object selected post dialog operation. For example,
if you have performed a lifecycle operation or a property update as part of the validDialog(.) then
if you want to have the updated menus as well as values in the selected item in the widget we
would need to set this value as part fo the result. Attribute used for this is refreshCheckoutState

3. Refresh widget : This will reload the widget post the operation. Attribute used for this is
refreshWidget

Sample Code

INFO

1. Supported values are "true"/"false".

2. Default value if not set is false.

 XmlNode result = super.validDialog(context);
 result.setAttribute("locateAndRefresh", "true");
 result.setAttribute("refreshCheckoutState", "true");
 result.setAttribute("refreshWidget","true");
 return result;

http://localhost:7777/d2sv-sdk/23.4.0/ 55/176

Workspace & Assistant

What is a workspace?

A workspace is the collection of tools, libraries, documentations put together in a specific directory
structure that acts as a Development Environment and facilitates creation, management and build of
D2 Plugin projects. D2SV SDK distributable comes in the form of a zip file named as D2SV-SDK-
<Version>.zip . After extracting the zip and subsequently executing ws-init.bat successfully in the
extracted folder turns it into a workspace.

What is the Assistant?

The workspace assistant is a command line utility that lives within a workspace & provides the functional
aspects of the workspace with help of NodeJS & Apache Maven runtimes. While running, the assistant
presents users with options to get something done within the corresponding workspace.

To run the assistant, open a command prompt/terminal in a workspace root directory and run

Things that the workspace assistant is capable of doing are:

Create a new plugin project

Add smartview application scope perspective

Add smartview UI support to an existing plugin

Remove a plugin from workspace

Add D2-REST controller to a plugin

Build all plugins in the workspace

Check out the documentation

Check out some samples

$npm start

http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_01_create.plugin
http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_02_add.sv.app.scope.perspective
http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_03_add.sv.ui
http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_04_remove.plugin
http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_05_add.rest.controller
http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_06_build.plugins
http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_07_open.sdk.documentation
http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_08_extract.sample

http://localhost:7777/d2sv-sdk/23.4.0/ 56/176

Add smartview shortcut behavior

Add smartview list tile

Add smartview shortcut tile

Add D2FS dialog to a plugin

Add new metadata view to plugin

Add new task details view to plugin

http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_09_add.sv.shortcut.behavior
http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_10_add.sv.tile.list
http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_11_add.sv.tile.shortcut
http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_12_add.d2fs.dialog
http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_13_add.metadata.view
http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_14_add.task.details.view

http://localhost:7777/d2sv-sdk/23.4.0/ 57/176

Creating a plugin
This option is used to initiate a fresh D2SV plugin project. A plugin project is basically a maven project
with all its dependencies pre-declared from the workspace lib folder. Based on selected options a
plugin project may optionally have a Smartview UI component. If there is a D2SV UI component in a
plugin, it requires NodeJS runtime to compile and package that specific component. All the relevant
NodeJS and Javascript dependencies will be initialized upon plugin project creation.

To create a new plugin, a developer has to choose the Create a new plugin project option from the
D2SV SDK workspace assistant.

Upon selecting the specific option in workspace assistant, a developer has to answer a few questions
before the assistant can create and initialize the plugin project. For some of these questions asked, the
workspace assistant will provide a meaningful contextual default answer based on usage, the default
answer is enclosed within a pair of parentheses () , to choose the default value, one has to only press
Enter key on the keyboard. These questions are self-explanatory however, here are a list of those
questions and their meaning -

Directory name to save this plugin project in

Where to save the newly created project, defaults to `plugins` directory within the workspace.

Maven group-id of the plugin

Since all the plugin projects are maven projects, each project requires a group-id to be specified.

CAUTION

Known Issue: D2SV-SDK-23.2 allowed maven group id to be left empty. This causes error when
building the plugin. Maven group id is validated in D2SV-SDK-23.4 to avoid this.

Name(maven artifact-id) of the plugin

Artifact identifier of the maven project to uniquely identify this plugin within the provided maven
group ID.

http://localhost:7777/d2sv-sdk/23.4.0/ 58/176

CAUTION

Known Issue: D2SV-SDK 23.2 allowed plugin name to start with numeric character. This causes
error when building the plugin. Plugin name is validated in D2SV-SDK-23.4 to avoid this.

Version of the plugin

Version of the plugin project.

One liner description

Used as the name and description for the underlying maven project. This is also shown as part of
installed plugin data in D2 runtime.

Package namespace

A unique name used as prefix/suffix for generating the source code & properties in the maven
project. The lowercase version of the given package name is used as part of the Java package name
and also used as unique identifier for the Smartview UI code in the project, if any. For an example, if
a Plugin project is created with Maven group-id `a.b.c` and it is given a package name `MyPlugin`
then the base package for all Java source code becomes `a.b.c.myplugin` and the Smartview specific
UI code is identified by `myplugin`.

Include support for D2SV UI

Whether to include D2 Smartview UI specific code infrastructure in the created plugin project. This
question should be answered with an `Yes (Y)` only if the plugin is meant to develop, override or
complement any D2SV front-end functionality. However, even for a plugin project initially created
to develop or complement back-end oriented functionality, D2SV UI support can be added later
through Add smartview UI support to an existing plugin project option.

http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_03_add.sv.ui

http://localhost:7777/d2sv-sdk/23.4.0/ 59/176

Add Smartview application scope perspective
A perspective in D2 Smartview is loosely defined as something similar to a web-page in case of multi
page web application. A perspective renders a view of semantically similar data with relevant UI controls
and interactions to operate on the data. D2 Smartview switches from one perspective to another based
on user interaction.

D2 Smartview has several perspective implementations like Landing, Doclist, Virtual Documents, Tasks &
Workflows etc. Out of all these the Landing persepctive is the default and shown immediately after
user login, unless the URL in browser's address bar points to a different hint.

The Landing perspective shows a collection of widget & shortcut tiles, some of them, upon click, opens
up another persepctive with a more specialized representation of the corresponding data. The semantic
associated with the data in such perspective is generally termed as application scope. All such
application scope perspectives (tied to different widget tiles in Landing perspective) visually look similar
irrespective of the data semantic that they represent.

This Add smartview application scope perspective option of workspace assistant, helps create the
boilerplate if we want to define a new data semantic in addition to those already defined by D2
Smartview.

CAUTION

Use this option when at least one plugin project exists in the workspace.

Associated questions and their meanings -

This perspective goes to plugin

Select a plugin project, inside which this boilerplate will be created.

Name of the widget type to associate

Which landing page widget this perspective will associate itself with. Each landing page widget tile
is configured with a `type` attribute, the possible values that can go against the `type` attribute can

http://localhost:7777/d2sv-sdk/23.4.0/ 60/176

be used here.

Name of the default smartview widget type(from landing config) to associate

The Smartview landing page has a bunch of default widget configuration name defined. When an
end-user navigates directly to an application scope using URL, the widget configuration data might
be missin in the URL, in thsoe cases the default widget configuration is used to resolve the
metadata requirement while opening the perspective.
Answer to this question specifies which default widget configuration from the landing page is to be
associated with the application scope being defined.

Application scope of this perspective(also used as URL fragment)

Name of this application scope. Also used as base part of the URL when this perspective is
activated.

Directory name where generated code will be put into

Relative location of the boilerplate code w.r.t selected plugin projects widget source directory

Default title of this perspective

Default displayable label when this perspective is active.

How would you describe this perspective?

Description associated wtih this perspective

http://localhost:7777/d2sv-sdk/23.4.0/ 61/176

Add smartview UI support to an existing plugin
project
This options of the workspace assistant can be used to add Smartview UI support to an existing D2SV
plugin project, if the project was created initially without Smartview support.

CAUTION

Use this option when at least one plugin project exists in the workspace.

Associated questions and their meanings -

Add D2SV UI to plugin

Select the D2SV plugin project, from the list of options, where Smartview UI code will be injected.

Selected plugin seems to have D2SV UI support enabled already, overwrite it ?

Confirm whether to overwrite the boilerplate code related to enabling D2SV UI support for the
plugin. This question is asked only when the assistant detects that the selected plugin project
already has D2SV UI support enabled in it.

http://localhost:7777/d2sv-sdk/23.4.0/ 62/176

Remove a plugin from workspace
This option is used to remove a plugin project from the corresponding workspace.

CAUTION

Use this option when at least one plugin project exists in the workspace.

Associated questions and their meanings -

Select plugin to remove from workspace

Select which plugin project is to be removed from the workspace.

Remove it completely from file system?

Whether to remove the project completely from filesystem. In case of a soft removal, the project is
left intact on the disk, however its entry from the aggregator POM in workspace is removed to
exclude it from build order.

http://localhost:7777/d2sv-sdk/23.4.0/ 63/176

Add D2-REST controller support to a plugin
project
If a D2SV plugin intends to deploy new D2-REST endpoints in addition to the factory endpoints, then
this option of the workspace assistant comes in handy.

Upon successful execution, this option, can add a boilerplate REST controller definition to the plugin
such that the controller handles HTTP GET(Retrieve), POST(Create), DELETE(Delete) operation on the
specified endpoint resource matching part of the CRUD style transaction.

The complete URL path of the endpoint created is represented as -

CAUTION

Use this option when at least one plugin project exists in the workspace.

Associated questions and their meanings -

Select plugin to add REST support

Specify the plugin project where to add boilerplate for this controller

Group name of controller

Group name for the service that this REST controller implements. Used as <group_name> part of the
URL format mentioned above. Usually same group name is used across multiple services if they all
happen to be correlated.

Endpoint name of controller

A meaningful name that should uniquely identify this endpoint in the group of correlated services.
This name is used as <endpoint_name> part of the URL format mentioned above.

/D2-Smartview/repositories/<repo_name>/<group_name>/<endpoint_name>

http://localhost:7777/d2sv-sdk/23.4.0/ 64/176

Service name to use against the controller

Name of the service that this endpoint represents. This name is used to form the name of Java
classes and interfaces which are finally going to implement the service.

http://localhost:7777/d2sv-sdk/23.4.0/ 65/176

Build all plugins in the workspace
This option builds all the plugin projects in the workspace whose entries are found in the aggregator
pom.xml file in the workspace.

Basically it runs mvn clean package command in the workspace root directory. As part of this option,
final build output from each of the plugin project is collected in the dist directory right under the
workspace root directory.

CAUTION

Use this option when at least one plugin project exists in the workspace.

http://localhost:7777/d2sv-sdk/23.4.0/ 66/176

Checkout documentation
This option starts the embedded documentation server and opens the home page of it in the default
browser.

http://localhost:7777/d2sv-sdk/23.4.0/ 67/176

Checkout samples
The D2SV SDK packs a few working samples to demonstrate the building blocks of D2SV runtime APIs.
This option of the workspace assitant is used to unpack a sample into the workspace such that
subsequently it can be built and deployed on a running D2 Smartview or simly the source code could be
checked out as tutorial.

Upon selecting this option, the only additional question to be answered is to pick the sample that is to
be extracted.

http://localhost:7777/d2sv-sdk/23.4.0/ 68/176

Add smartview shortcut behavior
D2 Smartview landing perspective can be configured to have a number of shortcut tiles. Each of these
shortcut tiles can do something specific and different from others based on its type, however their visual
representations are same irrespective of what they do.

The function behind a particular type of shortcut is defined by a shortcut behavior attached to the
shortcut type.

CAUTION

Use this option when at least one plugin project exists in the workspace.

This assistant option lets define a new shortcut behavior that can be attached to a shortcut type.

Associated questions and their meanings -

This shortcut goes to plugin

Select the plugin project where to create the boilerplate for the shortcut behavior

Type of the target shortcut

Declare the type of shortcut tile that are to be associated with this particular behavior

http://localhost:7777/d2sv-sdk/23.4.0/ 69/176

Add smartview list tile
Using this option of the assistant, a new list type of tile a.k.a widget tile definition could be added.

All widget tiles shown in D2 Smartview landing perspective are visually similar, however they are backed
by different type of widget conifiguration and display data evaluated in the context of that widget.

CAUTION

Use this option when at least one plugin project exists in the workspace.

Associated questions and their meanings -

This shortcut goes to plugin

To select the plugin project where to create boilerplate associated with creating a widget tile.

Name of Widget type to associate

Specify which type of widget configuration will drive this list tile data.

CSS class name for the icon

CSS class selector to put in the HTML element hosting the icon for this widget tile. Later this same
class name could be used to render a specific icon for this tile.

Directory name where generated code will be put into

Relative location of the boilerplate code w.r.t selected plugin projects widget source directory

Default title of this tile

Specifies an optional default name for the tile which is shown at the header region of this tile incase
the underlying widget configuration is not able to provide a name for it.

How would you describe this tile?

http://localhost:7777/d2sv-sdk/23.4.0/ 70/176

Description metadata for this tile.

Will it expand to own perspective?

Whether this tile will expand to its own application scope perspective. If anwered with yes then a
bunch of followup question related to the application scope perspective are asked. Add smartview
application scope perspective can be referred for meaning of such questions.

http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_02_add.sv.app.scope.perspective

http://localhost:7777/d2sv-sdk/23.4.0/ 71/176

Add smartview shortcut tile
Using this option of the assistant, a shortcut type of tile definition could be created.

D2 Smartview has a bunch of shortcut tile implemenation on its own. Visually all the shortcuts look
similar except their representation icon. However, each type of shortcut has its own mechanism to react
to click event.

CAUTION

Use this option when at least one plugin project exists in the workspace.

Associated questions and their meanings -

This shortcut goes to plugin

To select the plugin project where to create boilerplate associated with creating a widget tile.

Type of this shortcut

Declare the type of this shortcut tile definition. Creating custom widget type can be referred for
more information.

CSS class name for the icon

CSS class selector to put in the HTML element hosting the icon for this shortcut tile. Later this same
class name could be used to render a specific icon for this tile.

Does it require a widget config?

Shortcut tiles can optionally be backed by a widget config(E.g. Doclist type of shortcut requires a
DoclistWidget config). Answering with yes associates this shortcut with a widget config.

What this shortcut should do on click?

Defines what happens when end user clicks on this tile. Can be one of -

http://localhost:7777/d2sv-sdk/23.4.0/general/howto/1_03_custom.widget.type

http://localhost:7777/d2sv-sdk/23.4.0/ 72/176

Execute inline handler
A JS callback function will implement the action.

Execute a behavior
The action is delegated to a shortcut behavior implementaion. The actual definition of the
beahvior is to be coded into the boilerplate created.

Expand to perspective
The action is to open an application scope perspective. Further questions are asked for creating
the application scope perspective. Add smartview application scope perspective can be
referred for meanings of such questions.

http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_02_add.sv.app.scope.perspective

http://localhost:7777/d2sv-sdk/23.4.0/ 73/176

Add D2FS dialog to a plugin
If a D2SV plugin intends to define a property-page like form then this assistant option could be used to
create the boilerplate associated with such form, which is also known as D2FS dialog.

CAUTION

Use this option when at least one plugin project exists in the workspace.

Associated questions and their meanings -

Select plugin to add new D2FS dialog

Specify the plugin project where to add boilerplate for this dialog

Enter name of the dialog

A unique name of the dialog. It is also used as an ID to refer to the dialog from other part of D2SV
runtime.

CAUTION

Known Issue: D2SV-SDK 23.2 allowed dialog name to start with lowercase or number and have '_'
& '-' in them. This causes server error when opening the dialogs on Smartview UI. Dialog name is
validated in D2SV-SDK-23.4 to avoid this.

Title of the dialog

The title to be displayed when the dialog is visible on screen. It defaults to the given name of the
dialog.

Select form mode for the dialog

Whether to show the dialog in read-only or editable mode.

http://localhost:7777/d2sv-sdk/23.4.0/ 74/176

Select view mode for the dialog

Whether to show the dialog in center or side panel mode.

Create a menu to open the dialog?

Whether to also define a menu item in D2SV context menu so that clicking that menu would show
the dialog. Defaults to Yes .

Label for the menu

Define an English label for the menu. This question is asked only if the previous question was
answered with an Yes .

Pick a toolbar to add this menu to

D2-Smartview UI shows different type of menu bars depending on the application context. By
answering this option we can specify the menubar where this menu is going to be added. This
question is asked only if 'Create menu to open the dialog?' was answered with Yes .

Specify selection mode for the menu

Whether the menu should support single or multiple object selection.

http://localhost:7777/d2sv-sdk/23.4.0/ 75/176

Add new metadata view to plugin
If a D2SV plugin intends to define new views like properties, versions, permissions, task performers then
this assistant option could be used to create the boilerplate code associated with such views, which is
also known as metadata panel.

CAUTION

Use this option when at least one plugin project exists in the workspace.

Associated questions and their meanings -

Select plugin to add new metadata view

Specify the plugin project where to add boilerplate code for the new metadata view.

Enter name for the view

A unique name for the new metadata view.

This will be the option name shown in the dropdown by default.

Associated generated boilerplate files and their use -

The generated files would be present under <Plugins Directory>\<Selected
Plugin>\src\main\smartview\src\widgets\metadata\panels\<View Name>

impl folder

This folder contains the handlebar template file and the style sheet file used by the view.

It also contains the nls folder which contains the lang files used for the translation strings.

The option name shown in the dropdown could be changed by changing the translation string
value for viewName in lang.js file under nls/root folder.

http://localhost:7777/d2sv-sdk/23.4.0/ 76/176

metadata.<View Name>.view.js

This is the main view file for the new metadata view created.

This will have code for a simple helloworld view.

The template file, style sheet and lang file used by this view are already loaded.

A wrapper class name for this view, ui, regions and events are defined in this view for reference.

Modify this view based on the usecase.

Incase of complex view, break it into smaller independent views and keep them under impl folder,
specify regions in the main view and show these smaller views using regions.

By default, this view will be shown for all metadata dropdowns. Add conditions in enabled function
to restrict this view based on the usecase.

http://localhost:7777/d2sv-sdk/23.4.0/ 77/176

Add new task details view to plugin
If a D2SV plugin intends to define new views like working files, supporting files, task notes then this
assistant option could be used to create the boilerplate code associated with such views, which is also
known as task details panel.

CAUTION

Use this option when at least one plugin project exists in the workspace.

Associated questions and their meanings -

Select plugin to add new task details view

Specify the plugin project where to add boilerplate code for the new task details view.

Enter name for the view

A unique name for the new task details view.

This will be the name shown for the tab by default.

Associated generated boilerplate files and their use -

The generated files would be present under <Plugins Directory>\<Selected
Plugin>\src\main\smartview\src\widgets\task.details\panels\<View Name>

impl folder

This folder contains the handlebar template file and the style sheet file used by the view.

It also contains the nls folder which contains the lang files used for the translation strings.

The tab name could be changed by changing the translation string value for tabName in lang.js
file under nls/root folder.

http://localhost:7777/d2sv-sdk/23.4.0/ 78/176

task.<View Name>.view.js

This is the main view file for the new task details view created.

This will have code for a simple helloworld view.

The template file, style sheet and lang file used by this view are already loaded.

A wrapper class name for this view, ui, regions and events are defined in this view for reference.

Modify this view based on the usecase.

By default, this view will be visible in task and workflow tab panel. Add conditions to restrict this
view based on the usecase.

http://localhost:7777/d2sv-sdk/23.4.0/ 79/176

Packaged Samples
D2SV SDK includes a few sample plugins as part of its distribution. They could be extracted in a
workspace by using Checkout some samples option of the workspace assistant.

List of samples

D2 Admin Groups Sample

D2SV client to server logging

D2SV Custom Dialogs(D2FS) sample

D2SV Read-Only permission display

D2SV Custom custom widget type sample

Custom Table Cell Sample

D2SV Object On Click Sample

Open a cabinet/folder in Doclist

http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_08_extract.sample
http://localhost:7777/d2sv-sdk/23.4.0/general/samples/3_01_admin_groups
http://localhost:7777/d2sv-sdk/23.4.0/general/samples/3_02_client_to_server_logging
http://localhost:7777/d2sv-sdk/23.4.0/general/samples/3_03_custom_dialog
http://localhost:7777/d2sv-sdk/23.4.0/general/samples/3_04_read_only_permission
http://localhost:7777/d2sv-sdk/23.4.0/general/samples/3_05_custom_widget_tile
http://localhost:7777/d2sv-sdk/23.4.0/general/samples/3_06_custom_table_cell
http://localhost:7777/d2sv-sdk/23.4.0/general/samples/3_07_object_onclick_actions
http://localhost:7777/d2sv-sdk/23.4.0/general/samples/3_08_open_folder_in_doclist

http://localhost:7777/d2sv-sdk/23.4.0/ 80/176

D2 Admin-Groups Sample
D2 Smartview does not ship with an Out-Of-The-Box(OOTB) group management widget like D2 Classic.
However, the D2 Admin-Groups sample plugin fills-in the gap functionally and serves as a complete
example of how to use SDK to

Define a landing page widget tile.

Define a perspective and stitch it up with the landing page widget.

Define and use a custom menu type to go with the widget.

Define a few REST endpoints to serve data to the widget.

Instruction to try out the sample

As this plugin implements a landing page tile as part of it, some configuration changes are required in
the D2 Smartview landing page before the tile is made available for the end users. Here are the list of
steps required to completely deploy and configure this plugin.

Build the plugin using npm run build from SDK workspace root.

Copy D2-AdminGroups-1.0.0.jar from 'dist' folder in workspace root and paste it inside WEB-
INF/lib folder of a deployed D2 Smartview application.

Restart application server on which D2 Smartview is deployed.

Open D2-Config web application in browser, login and then navigate to Widget view -> Widget...
from menu.

Create a new widget configuration, and put "Manage Groups"(or whatever you wish) as Name and
select "AdminGroupsWidget" for Widget type field.

Fill-in other fields as necessary and save the configuration.

From the toolbar, click Matrix to go to D2-config matrix and enable the widget configuration, you
just created, against appropriate contexts.

Select Widget view -> Smart View Landing Page... from menubar to navigate to landing page
configurations.

Select an applicable configuration from the left side and click Download to get the structure file
locally and then open in notepad to edit.

http://localhost:7777/d2sv-sdk/23.4.0/ 81/176

TIP

If a pre-created Smartview landing page configuration does not exist, then refer to D2
Administration Guide documentation to create the same and learn basics of landing page
structure file.

Paste the following piece of xml anywhere right under the <content> tag

TIP

If you've used a different name while creating the widget configuration, use that name as the
value for name attribute.

Save the landing structure xml file and upload it to D2-Config under the same landing page
configuration from where we downloaded it before.

Save the configuration change in D2-Config and click Tools -> Refresh cache from menubar.

<widget-container>
 <widget name="Manage Groups" type="AdminGroupsWidget"/>
</widget-container>

http://localhost:7777/d2sv-sdk/23.4.0/ 82/176

Reloading the D2 Smartview at this point should show an additional widget in the landing page,

similar to following

TIP

Clicking 'More actions' icon for any group, shows a 'Manage' menu, if the logged in user is an
Administrator or a Superuser.

Source code structure

D2-AdminGroups
|
| pom.xml
|
+---src
| \---main
| +---java
| | \---com
| | +---emc
| | | D2PluginVersion.java
| | |

http://localhost:7777/d2sv-sdk/23.4.0/ 83/176

| | \---opentext
| | \---d2
| | +---rest
| | | \---context
| | | \---jc
| | | PluginRestConfig_AdminGroups.java
| | |
| | \---smartview
| | \---admingroups
| | | AdminGroupsPlugin.java
| | |
| | +---api
| | | AdminGroupsVersion.java
| | |
| | \---rest
| | | package-info.java
| | |
| | +---controller
| | | AdminGroupsController.java
| | | AdminGroupsMembersController.java
| | |
| | +---dfc
| | | | AdminGroupsManager.java
| | | |
| | | \---impl
| | | AdminGroupsManagerImpl.java
| | |
| | +---model
| | | GroupMembers.java
| | | GroupModel.java
| | | UserModel.java
| | |
| | \---view
| | GroupMembersFeedView.java
| | GroupsFeedView.java
| | GroupView.java
| | UsersFeedView.java
| | UserView.java
| |
| +---resources
| | | admingroups-version.properties
| | | D2Plugin.properties
| | |
| | +---smartview

http://localhost:7777/d2sv-sdk/23.4.0/ 84/176

| | | SmartView.properties
| | |
| | +---strings
| | | \---menu
| | | \---PMenuContextAdminGroups
| | | PMenuContextAdminGroups_en.properties
| | |
| | \---xml
| | \---unitymenu
| | PMenuContextAdminGroups.xml
| |
| \---smartview
| | .csslintrc
| | .eslintrc-html.yml
| | .eslintrc.yml
| | .npmrc
| | admingroups.setup.js
| | config-editor.js
| | Gruntfile.js
| | package.json
| | server.conf.js
| |
| +---src
| | | admingroups-extensions.json
| | | admingroups-init.js
| | | component.js
| | | config-build.js
| | | Gruntfile.js
| | |
| | +---bundles
| | | admingroups-bundle.js
| | |
| | +---commands
| | | | manage.group.js
| | | | node.actions.rules.js
| | | |
| | | \---nls
| | | | lang.js
| | | |
| | | \---root
| | | lang.js
| | |
| | +---dialogs
| | | \---manage.group

http://localhost:7777/d2sv-sdk/23.4.0/ 85/176

| | | | manage.group.dialog.js
| | | | manage.group.view.js
| | | |
| | | \---impl
| | | | group.members.form.view.js
| | | | manage.group.css
| | | | manage.group.hbs
| | | |
| | | \---nls
| | | | lang.js
| | | |
| | | \---root
| | | lang.js
| | |
| | +---extensions
| | | | admin.groups.icon.sprites.js
| | | | admin.groups.perspective.js
| | | | admin.groups.tile.js
| | | |
| | | \---nls
| | | | lang.js
| | | |
| | | \---root
| | | lang.js
| | |
| | +---models
| | | admin.groups.collection.js
| | | group.members.collection.js
| | | group.model.js
| | | member.model.js
| | |
| | +---test
| | | extensions.spec.js
| | |
| | +---utils
| | | | alert.util.js
| | | | constants.js
| | | | menu.utils.js
| | | | startup.js
| | | |
| | | +---contexts
| | | | \---factories
| | | | admin.groups.collection.factory.js
| | | | next.group.factory.js

http://localhost:7777/d2sv-sdk/23.4.0/ 86/176

| | | |
| | | +---perspectives
| | | | admin.groups.perspective.json
| | | |
| | | \---theme
| | | | action.icons.js
| | | |
| | | \---action_icons
| | | action_sample_icon.svg
| | |
| | \---widgets
| | +---admin.groups
| | | | admin.groups.manifest.json
| | | | admin.groups.view.js
| | | | toolitems.js
| | | |
| | | \---impl
| | | | admin.groups.css
| | | |
| | | +---images
| | | | group-svgrepo-com.svg
| | | |
| | | \---nls
| | | | admin.groups.manifest.js
| | | | lang.js
| | | |
| | | \---root
| | | admin.groups.manifest.js
| | | lang.js
| | |
| | \---admin.groups.members
| | | admin.groups.members.view.js
| | |
| | \---impl
| | | admin.groups.members.css
| | |
| | \---nls
| | | lang.js
| | |
| | \---root
| | lang.js
| |
| \---test
| Gruntfile.js

http://localhost:7777/d2sv-sdk/23.4.0/ 87/176

Files and their purpose

Following are the list of function oriented source files and their purpose. Other source files present
within the plugin are part of common infrastructure code and explained in Understanding D2SV plugin
project.

REST Controller

src/main/java/com/opentext/d2/rest/context/jc/PluginRestConfig_AdminGroups.java - Declares
Spring Bean AdminGroupsManager through AdminGroupsManagerImpl .

src/main/java/com/opentext/d2/smartview/admingroups/rest/controller/AdminGroupsController.ja
va - Defines a REST controller with two endpoints to list all the users and groups from
Documentum.

src/main/java/com/opentext/d2/smartview/admingroups/rest/controller/AdminGroupsMembersCo
ntroller.java - Defines a REST controller with two endpoints to list and edit members of a group.

src/main/java/com/opentext/d2/smartview/admingroups/rest/dfc/AdminGroupsManager.java -
Declares the data manager interface used by above REST controllers to get/set the data they deal
with.

src/main/java/com/opentext/d2/smartview/admingroups/rest/dfc/impl/AdminGroupsManagerImpl.
java - Data manager that interacts with Documentum through DQL and exchanges data as per
AdminGroupsManager interface.

src/main/java/com/opentext/d2/smartview/admingroups/rest/model/GroupMembers.java -
Serializable POJO that represents members of a group while editing.

src/main/java/com/opentext/d2/smartview/admingroups/rest/model/GroupModel.java -
Serializable POJO that represents a single group.

src/main/java/com/opentext/d2/smartview/admingroups/rest/model/UserModel.java - Serializable
POJO that represents a single user.

src/main/java/com/opentext/d2/smartview/admingroups/rest/view/GroupMembersFeedView.java -
Spring view used to wrap and serialize a list of group member data. Uses UserView in turn to

| karma.conf.js
|
\---target

http://localhost:7777/d2sv-sdk/23.4.0/general/understand.d2sv.plugin

http://localhost:7777/d2sv-sdk/23.4.0/ 88/176

serialize each individual member.

src/main/java/com/opentext/d2/smartview/admingroups/rest/view/GroupsFeedView.java - Spring
view used to wrap and serialize a list of group data. Uses GroupView in turn to serialize each
individual group.

src/main/java/com/opentext/d2/smartview/admingroups/rest/view/GroupView.java - Spring view
used to seralize a single group data.

src/main/java/com/opentext/d2/smartview/admingroups/rest/view/UsersFeedView.java - Spring
view used to wrap and serialize a list of user data. Uses UserView in turn to serialize each individual
user.

src/main/java/com/opentext/d2/smartview/admingroups/rest/view/UserView.java - Spring view
used to serialize a single user data.

Group-manage menu configuration in back-end and its display & execution on the front-end

src/main/resources/strings/menu/PMenuContextAdminGroups/PMenuContextAdminGroups_en.pro
perties - Labels associated with the dynamically configured menu.

src/main/resources/xml/unitymenu/PMenuContextAdminGroups.xml - The menu definition file that
dynamically adds a new type(PMenuContextAdminGroups) of menu for the D2FS D2MenuService to
discover and return for D2 Smartview.

src/main/smartview/src/bundles/admingroups-bundle.js - A portion of this file is used to refer to
key RequireJS modules that define the extensions to the toolbar and menu related D2SV UI API.

src/main/smartview/src/commands/manage.group.js - A CommandModel that implements the
executable logic when a user clicks the Manage menu on the UI. It dynamically loads and displays
manage.group.dialog.js dialog. When the dialog closes(without cancel flag), it makes an AJAX call

define([
 ...
 'admingroups/utils/startup',
 'admingroups/commands/node.actions.rules',
 'admingroups/commands/manage.group',
 ...
], {});

http://localhost:7777/d2sv-sdk/23.4.0/ 89/176

to group-update related REST endpoint created by the Java code from above and then finally
shows a toast message on successful completion.

src/main/smartview/src/commands/node.actions.rules.js - Defines client side filtering and
association logic to attach the above manage.group.js command model implementaion to a UI
toolbar item.

src/main/smartview/src/utils/menu.utils.js - Parses the data for PMenuContextAdminGroups type of
menu into a client-side toolbar definition that in turn is used by landing page tile & perspective.

src/main/smartview/src/utils/startup.js - Runs as part of D2 Smartview client-side startup flow. This
flow is executed everytime endusers reload the D2 Smartview application in their internet browser.
As part of this startup hook, an AJAX call is made to get the menu configuration data for type
PMenuContextAdminGroups , then the response is trasformed into a toolbar definition by
menu.utils.js .

src/main/smartview/src/admingroups-extensions.json - A portion of this file registers extensions to
the toolbar and menu related D2SV UI API. The corresponding portion is highlighted below

Tile on the landing page

src/main/smartview/src/bundles/admingroups-bundle.js - A portion of this file refers to the the
RequireJS modules that implement the landing page tile. These references are only used for
RequireJS modules that are otherwise not referenced statically from any other RequireJS module.

"d2/sdk/commands/node.actions.rules": {
 "extensions": {
 "admingroups": [
 "admingroups/commands/node.actions.rules"
]
 }
 },
 "d2/sdk/utils/commands": {
 "extensions": {
 "admingroups": [
 "admingroups/commands/manage.group"
]
 }
 }

http://localhost:7777/d2sv-sdk/23.4.0/ 90/176

src/main/smartview/src/extensions/admin.groups.icon.sprites.js - Defines the icon to represent a
user and a group by means of extension.

src/main/smartview/src/extensions/admin.groups.tile.js - Declares a new widget type handler for
the landing page tiles by means of extension.

src/main/smartview/src/admingroups-extensions.json - A portion of this file registers extensions to
the landing page tile & icon related D2SV UI API. The corresponding portion is highlighted below

src/main/smartview/src/models/admin.groups.collection.js - A BackboneJS collection that holds all
available groups data. Uses group.model.js to represent each group in the collection. Makes an

define([
 ...
 'admingroups/extensions/admin.groups.icon.sprites',
 ...
 'admingroups/extensions/admin.groups.tile',
 'admingroups/widgets/admin.groups/admin.groups.view'
 ...
 'json!admingroups/widgets/admin.groups/admin.groups.manifest.json',
 'i18n!admingroups/widgets/admin.groups/impl/nls/admin.groups.manifest'
], {});

"d2/sdk/utils/landingpage/tiles": {
 "extensions": {
 "admingroups": [
 "admingroups/extensions/admin.groups.tile"
]
 }
 },
 ...
 "d2/sdk/controls/icon.sprites/node.icon.sprites": {
 "extensions": {
 "admingroups": [
 "admingroups/extensions/admin.groups.icon.sprites"
]
 }
 }

http://localhost:7777/d2sv-sdk/23.4.0/ 91/176

AJAX call to one of the REST endpoint, created by Java code from above, to get the available
groups data.

src/main/smartview/src/models/group.model.js - A BackboneJS model that holds data for a single
group.

src/main/smartview/src/utils/contexts/factories/admin.groups.collection.factory.js - A factory to
control creation of initialized/uninitialized group collection instances.

src/main/smartview/src/utils/contexts/factories/next.group.factory.js - A factory to control creation
of group-model instances. Purpose of this factory is to create a single instance of group model and
use that to reflect current selected group item in the UI. This instance is used by
admin.groups.view.js to constantly update the selected group data as user clicks an item in the
list of visible groups in UI.

src/main/smartview/src/utils/constants.js - A portion of the file defines a few frequently used
constant values in the context of landing tile implementation.

src/main/smartview/src/widgets/admin.groups/admin.groups.view.js - A MarionetteJS view that
implements the UI and function for the widget. An instance of this view is dynamically created by
the D2SV runtime and this instance manages and renders DOM elements to represent the list of all
available groups. It also handles user interaction with the DOM elements.

src/main/smartview/src/widgets/admin.groups/toolitems.js - The toolbar configuration used by
admin.groups.view.js to display inline Manage menu. An instance of it is manipulated by
menu.utils.js to dynamically inject the menu items in the toolbar at the time of D2SV UI startup.

The perspective, landing tile expands into

The perspective is defined in a two panel layout where the left-side re-uses the same
admin.groups.view.js from landing page tile. Apart from the RequireJS modules and other source
code resources referred by the landing page tile, here's the other files involved in defining the
perspective itself besides the right-side part of it.

src/main/smartview/src/bundles/admingroups-bundle.js - A portion of this file refers to the the
RequireJS modules that implement the perspective and right-side part of it. These references are
only used for RequireJS modules that are otherwise not referenced statically from any other
RequireJS module.

http://localhost:7777/d2sv-sdk/23.4.0/ 92/176

src/main/smartview/src/extensions/admin.groups.perspective.js - Declares an application scope
handler and associates a perspective definition file with it.

src/main/smartview/src/admingroups-extensions.json - A portion of this file registers extensions
toward application scope perspective related D2SV UI API. The corresponding portion is highlighted
below

src/main/smartview/src/models/group.members.collection.js - A BackboneJS collection that holds
membership data for a given group. Uses member.model.js to represent each member within the
group. Makes an AJAX call to one of the REST endpoint, created by Java code from above, to get
the members data for a selected group.

src/main/smartview/src/models/member.model.js - A BackboneJS model that holds data for a
member within a group.

src/main/smartview/src/utils/contexts/factories/next.group.factory.js - A factory to control creation
of group-model instances. Purpose of this factory is to create a single instance of group model and
use that to reflect current selected group item in UI. This instance is used by
admin.groups.members.view.js to constantly monitor change to the selected group in UI.

src/main/smartview/src/utils/perspectives/admin.groups.perspective.json - Defines the layout for
the perspective and associates admin.groups & admin.groups.members as the widgets to go on

define([
 ...
 'admingroups/extensions/admin.groups.perspective',
 ...
 'admingroups/widgets/admin.groups.members/admin.groups.members.view',
 'json!admingroups/utils/perspectives/admin.groups.perspective.json',
 ...
], {});

"d2/sdk/utils/perspectives/app.scope.perspectives": {
 "extensions": {
 "admingroups": [
 "admingroups/extensions/admin.groups.perspective"
]
 }
 }

http://localhost:7777/d2sv-sdk/23.4.0/ 93/176

the left and right side respectively. The D2SV runtime dynamically creates the associated view
instances when the perspective comes alive.

src/main/smartview/src/widgets/admin.groups.members/admin.groups.members.view.js - A
MarionetteJS view implementation that displays the members of a selected group. An instance of
this view is dynamically created by D2SV runtime to show list of members in the perspective. The
instance automatically updates itself as a result of end users selecting a group from the left-side by
means of constant watch over the group model instance acquired using next.group.factory.js .

The side-panel dialog that manages group member

src/main/smartview/src/bundles/admingroups-bundle.js - A portion of this file refers to the the
RequireJS modules that implements the dialog. These references are only used for RequireJS
modules that are otherwise not referenced statically from any other RequireJS module.

src/main/smartview/src/dialogs/manage.group/manage.group.dialog.js - Uses D2SV UI API to
create a side panel and host an instance of manage.group.view.js to show the related UI. Also
collects information about updated group members and relays that to the caller.

src/main/smartview/src/dialogs/manage.group/manage.group.view.js - A MarionetteJS view that
wraps an instance of group.members.form.view.js to make it renderable within the side panel and
defers the instance creation & rendering until required membership data has been fetched through
an instance of group.members.collection.js . Also defines utility methods to have a check on
whether the membership data has changed from what is loaded initially. Uses manage.group.hbs &
manage.group.css files for HTML templating and CSS styling respectively.

src/main/smartview/src/dialogs/manage.group/impl/group.members.form.view.js - Uses D2SV UI
API to create a statically defined form with multi-select list field to show membership information
for the selcted group. Also makes an AJAX call to one of the REST endpoint, created by Java code
from above, to get all available users data that serves as the options shown while editing the

define([
 ...
 'admingroups/dialogs/manage.group/manage.group.dialog',
 ...
], {});

http://localhost:7777/d2sv-sdk/23.4.0/ 94/176

membership data. Also defines utility method to get the membership information for the selected
group at any time.

http://localhost:7777/d2sv-sdk/23.4.0/ 95/176

D2SV client to server logging
D2SV UI uses log4javascript to enable logging for UI components. By default, the library is configured
to channel log output to web browser console. In the past while debugging for some issue in D2
Smartview, we felt the need to correlate this client-side log output with server-side log output
generated by back-end components and usually saved in "D2-Smartview.log" file. Driven by this need,
we've created this sample plugin which re-configures the log4javascript and channels the log output
to the same server-side log file. Key concepts explored in this plugin are

REST endpoint with un-conventional input/output.

RequireJS module re-configuration

Instruction to try out the sample

Build the plugin using npm run build from SDK workspace root.

Copy D2SV-Client2Server-Logging-1.0.0.jar from "dist" folder in workspace root and paste it
inside WEB-INF/lib folder of a deployed D2 Smartview application.

Edit D2 Smartview logging configuration file logback.xml from WEB-INF/classes folder and set
the root logging level to INFO .

Edit rest-api-runtime.properties from WEB-INF/classes folder and add/append pattern
/clientlog to the value of property rest.security.anonymous.url.patterns .

Restart application server on which D2 Smartview is deployed.

Reload D2-Smartview application in web-browser with additional query parameter loglevel=info .

TIP

Complete URL might look like https://mydomain.com/D2-Smartview/ui?loglevel=info#d2

Open console for the web-browser and check if some INFO level log output is present.

On the server-side open D2-Smartview.log file and search for the same log statements as from
web-browser console.

Source code structure

http://localhost:7777/d2sv-sdk/23.4.0/ 96/176

D2SV-Client2Server-Logging
|
| pom.xml
|
+---src
| \---main
| +---java
| | \---com
| | +---emc
| | | D2PluginVersion.java
| | |
| | \---opentext
| | \---d2
| | +---rest
| | | \---context
| | | \---jc
| | | PluginRestConfig_C2SLogging.java
| | |
| | \---smartview
| | \---c2slogging
| | | C2SLoggingPlugin.java
| | |
| | +---api
| | | C2SLoggingVersion.java
| | |
| | \---rest
| | | package-info.java
| | |
| | +---api
| | | | IClientLogManager.java
| | | |
| | | \---impl
| | | ClientLogManager.java
| | |
| | +---controller
| | | InboundExternalLogController.java
| | |
| | \---model
| | HelpModel.java
| | LogEntry.java
| | LogLevel.java
| | LogRequest.java
| |

http://localhost:7777/d2sv-sdk/23.4.0/ 97/176

| +---resources
| | | c2slogging-version.properties
| | | D2Plugin.properties
| | |
| | \---smartview
| | SmartView.properties
| |
| \---smartview
| | .csslintrc
| | .eslintrc-html.yml
| | .eslintrc.yml
| | .npmrc
| | c2slogging.setup.js
| | config-editor.js
| | Gruntfile.js
| | package.json
| | server.conf.js
| |
| +---src
| | | c2slogging-extensions.json
| | | c2slogging-init.js
| | | component.js
| | | config-build.js
| | | Gruntfile.js
| | |
| | +---bundles
| | | c2slogging-bundle.js
| | |
| | +---test
| | | extensions.spec.js
| | |
| | \---utils
| | | startup.js
| | |
| | \---theme
| | | action.icons.js
| | |
| | \---action_icons
| | action_sample_icon.svg
| |
| \---test
| Gruntfile.js
| karma.conf.js

http://localhost:7777/d2sv-sdk/23.4.0/ 98/176

Files and their purpose

Following are the list of function oriented source files and their purpose. Other source files present
within the plugin are part of common infrastructure code and explained in Understanding D2SV plugin
project.

REST Controller

src/main/java/com/opentext/d2/rest/context/jc/PluginRestConfig_C2SLogging.java - Declares
Spring Bean IClientLogManager through ClientLogManager .

src/main/java/com/opentext/d2/smartview/c2slogging/rest/api/IClientLogManager.java - Declares
log manager interface for REST controllers to use.

src/main/java/com/opentext/d2/smartview/c2slogging/rest/api/impl/ClientLogManager.java - Log
manager implementation that parses and maps input log statements and relays those statements
into server side log.

src/main/java/com/opentext/d2/smartview/c2slogging/rest/controller/InboundExternalLogControll
er.java - Defines two REST endpoints, one receives HTTP POST request with log statements as part
of request body, the other responds to HTTP GET requests with help information on how to use the
first endpoint.

src/main/java/com/opentext/d2/smartview/c2slogging/rest/model/HelpModel.java - Serializable
POJO that holds help information.

src/main/java/com/opentext/d2/smartview/c2slogging/rest/model/LogEntry.java - Serializable
POJO that represents a single log statement.

src/main/java/com/opentext/d2/smartview/c2slogging/rest/model/LogLevel.java - Enum that
represents D2SV client-side log levels.

src/main/java/com/opentext/d2/smartview/c2slogging/rest/model/LogRequest.java - Serializable
POJO that holds a bunch of log statements together.

RequireJS module configuration

|
\---target

http://localhost:7777/d2sv-sdk/23.4.0/general/understand.d2sv.plugin

http://localhost:7777/d2sv-sdk/23.4.0/ 99/176

src/main/smartview/src/c2slogging-init.js - This file is used to re-configure module nuc/utils/log
so that it channels log statements to the endpoint created by Java code from above. It also
configures nuc/lib/log4javascript to customize the request body format sent to the REST
endpoint.

INFO

The module nuc/utils/log encapsulates the log4javascript library and provides managed
logging API to D2SV UI components.

http://localhost:7777/d2sv-sdk/23.4.0/ 100/176

D2SV Custom Dialogs(D2FS) sample
D2 Custom Dialog sample provide an option to modify the metadata for a document with any available
properties page created in D2-Config. As out of the box, the document metadata can be modified only
using the properties page which is resolved after configuration matrix against the context.

This sample shows

How to define a D2 Dialog service plugin which implements ID2fsPlugin.

How to define a D2FS state method to make dialog chaining as context less. So that the last step
Submit will be performed on OOTB property dialog service instead of original dialog service.

Instruction to try out the sample

Build the plugin using npm run build from SDK workspace root.

Copy D2SV-Custom-Dialogs-1.0.0.jar from 'dist' folder in workspace root and paste it inside WEB-
INF/lib folder of a deployed D2 Smartview application.

Restart application server on which D2 Smartview is deployed.

Open D2-Config web application in browser, login and then create few properties page
configuration.

Login into D2-Smartview and navigate to any Doclist widget view.

Select an object and locate & click menu item Show advance properties from the selection toolbar
to open Selective property page view dialog.

In the Select view dropdown, choose any property page name and click Show button.

The dialog should show selected object's metadata as per the selected property page name.

Source code structure

D2SV-Custom-Dialogs
|
| pom.xml
|
+---src

http://localhost:7777/d2sv-sdk/23.4.0/ 101/176

| \---main
| +---java
| | \---com
| | +---emc
| | | D2PluginVersion.java
| | |
| | \---opentext
| | \---d2
| | +---rest
| | | \---context
| | | \---jc
| | | PluginRestConfig_D2SVDialogs.java
| | |
| | \---smartview
| | \---d2svdialogs
| | | D2SVDialogsPlugin.java
| | |
| | +---api
| | | D2SVDialogsVersion.java
| | |
| | +---dialogs
| | | SelectivePropertyDisplay.java
| | |
| | +---rest
| | | package-info.java
| | |
| | \---webfs
| | \---dialog
| | D2DialogServicePlugin.java
| |
| +---resources
| | | D2Plugin.properties
| | | d2svdialogs-version.properties
| | |
| | +---smartview
| | | SmartView.properties
| | |
| | +---strings
| | | +---dialog
| | | | \---SelectivePropertyDisplay
| | | | SelectivePropertyDisplay_en.properties
| | | |
| | | \---menu
| | | \---MenuContext

http://localhost:7777/d2sv-sdk/23.4.0/ 102/176

| | | MenuContext_en.properties
| | |
| | \---xml
| | +---dialog
| | | SelectivePropertyDisplay.xml
| | |
| | \---unitymenu
| | MenuContextDelta.xml
| |
| \---smartview
| | .csslintrc
| | .eslintrc-html.yml
| | .eslintrc.yml
| | .npmrc
| | config-editor.js
| | d2svdialogs.setup.js
| | Gruntfile.js
| | package.json
| | server.conf.js
| |
| +---src
| | | component.js
| | | config-build.js
| | | d2svdialogs-extensions.json
| | | d2svdialogs-init.js
| | | Gruntfile.js
| | |
| | +---bundles
| | | d2svdialogs-bundle.js
| | |
| | +---dialogs
| | | \---d2fs
| | | context.less.d2fs.state.method.js
| | |
| | +---extensions
| | | dialog.state.methods.js
| | |
| | +---test
| | | extensions.spec.js
| | |
| | \---utils
| | | startup.js
| | |
| | \---theme

http://localhost:7777/d2sv-sdk/23.4.0/ 103/176

Files and their purpose

Following are the list of function oriented source files and their purpose. Other source files present
within the plugin are part of common infrastructure code and explained in Understanding D2SV plugin
project.

Java Classes

src/main/java/com/opentext/d2/smartview/d2svdialogs/dialogs/SelectivePropertyDisplay.java -
Dialog class which implements ID2Dialog to serve the dialog for selecting the properties page
configuration.

src/main/java/com/opentext/d2/smartview/d2svdialogs/webfs/dialog/D2DialogServicePlugin.java -
Dialog service class which implements ID2fsPlugin interface for validating the dialog request.

Dialog form definition

src/main/resources/xml/dialog/SelectivePropertyDisplay.xml - Defines the form structure for
rendering "SelectivePropertyDisplay" dialog. The same file will be processed in
"src/main/java/com/opentext/d2/smartview/d2svdialogs/dialogs/SelectivePropertyDisplay.java"

src/main/resources/strings/dialog/SelectivePropertyDisplay/SelectivePropertyDisplay_en.properties
- Label associated with the dialog.

Custom dialog menu configuration in back-end

src/main/resources/strings/menu/MenuContext/MenuContext_en.properties - Labels associated
with the dynamically configured menu.

| | | action.icons.js
| | |
| | \---action_icons
| | action_sample_icon.svg
| |
| \---test
| Gruntfile.js
| karma.conf.js
|
\---target

http://localhost:7777/d2sv-sdk/23.4.0/general/understand.d2sv.plugin

http://localhost:7777/d2sv-sdk/23.4.0/ 104/176

src/main/resources/xml/unitymenu/MenuContextDelta.xml - The menu definition file that
dynamically adds a new type(MenuContext) of menu for the D2FS D2MenuService to discover and
return for D2 Smartview.

Dialog state method override

As part of dialog state customization added extension for dialog state methods. This state method will
be resolved based on "SelectivePropertyDisplay" dialog name. Intension of having custom dialog state
method to override the default behavior of dialog state. With this override dialog state is decoupled
between first form and second form.

src/main/smartview/src/dialogs/d2fs/context.less.d2fs.state.method.js - This is a client side
JavaScript file extends "d2/sdk/controls/dialogs/generic/d2fs.state.method". Dialog context is
decoupled by having dummy override for "setDialogContextForm()" method.

src/main/smartview/src/extensions/dialog.state.methods.js - This file is having rule for resolving the
dialog state method based on dialog name.

src/main/smartview/src/d2svdialogs-extensions.json - Adding the rule for dialog.state.method.

 "d2/sdk/controls/dialogs/generic/dialog.state.methods": {
 "extensions": {
 "d2svdialogs": [
 "d2svdialogs/extensions/dialog.state.methods"
]
 }
 }

http://localhost:7777/d2sv-sdk/23.4.0/ 105/176

D2SV Read-Only Permission View Sample
D2 Read-Only permission view sample plugin fills-in the gap functionally and serves as a complete
example of how to use SDK to

Define a custom action services

Define a custom menu by default and initiate a dialog

Define a custom dialog view to display the information and show the form view of the data

Instruction to try out the sample

Developer can extract the sample and build it using the workspace assistant. Once built, the distribution
is collected in 'dist' folder as D2SV-ReadOnlyPermission-View-1.0.0.jar which can placed in WEB-
INF/lib directory of a deployed D2 Smartview. The application server needs to be restarted post
deployment.

As result of deploying this plugin, it will introduce a new menu in Doclist widget as View Permission

Source code structure

D2SV-ReadOnlyPermission-View
|
| pom.xml
|
+---src
| \---main
| +---java
| | \---com
| | +---emc
| | | D2PluginVersion.java
| | |
| | \---opentext
| | \---d2
| | +---rest
| | | \---context
| | | \---jc

http://localhost:7777/d2sv-sdk/23.4.0/ 106/176

| | | PluginRestConfig_D2SVROPView.java
| | |
| | \---smartview
| | \---d2svropview
| | | D2SVROPViewPlugin.java
| | |
| | +---api
| | | D2SVROPViewVersion.java
| | |
| | +---rest
| | | package-info.java
| | |
| | \---webfs
| | \---custom
| | PermissionActionService.java
| |
| +---resources
| | | D2Plugin.properties
| | | d2svropview-version.properties
| | |
| | +---smartview
| | | SmartView.properties
| | |
| | +---strings
| | | \---menu
| | | \---MenuContext
| | | MenuContext_en.properties
| | |
| | \---xml
| | \---unitymenu
| | MenuContextDelta.xml
| |
| \---smartview
| | .csslintrc
| | .eslintrc-html.yml
| | .eslintrc.yml
| | .npmrc
| | config-editor.js
| | d2svropview.setup.js
| | Gruntfile.js
| | package.json
| | server.conf.js
| |
| +---src

http://localhost:7777/d2sv-sdk/23.4.0/ 107/176

| | | component.js
| | | config-build.js
| | | d2svropview-extensions.json
| | | d2svropview-init.js
| | | Gruntfile.js
| | |
| | +---bundles
| | | d2svropview-bundle.js
| | |
| | +---commands
| | | | node.actions.rules.js
| | | | view.permission.js
| | | |
| | | \---impl
| | | \---nls
| | | | lang.js
| | | |
| | | \---root
| | | lang.js
| | |
| | +---dialogs
| | | \---permissions
| | | | permissions.dialog.js
| | | | permissions.view.js
| | | |
| | | \---impl
| | | | permission.collection.js
| | | | permissions.css
| | | | permissions.hbs
| | | | table.columns.js
| | | |
| | | \---nls
| | | | lang.js
| | | |
| | | \---root
| | | lang.js
| | |
| | +---test
| | | extensions.spec.js
| | |
| | \---utils
| | | startup.js
| | |
| | \---theme

http://localhost:7777/d2sv-sdk/23.4.0/ 108/176

Files and their purpose

Following are the list of function oriented source files and their purpose. Other source files present
within the plugin are part of common infrastructure code and explained in Understanding D2SV plugin
project.

REST Implementations

pom.xml - Defines the maven project for this plugin.

src/main/java/com/emc/D2PluginVersion.java - Declares identification information for the entire
plugin using D2SVROPViewVersion class

src/main/java/com/opentext/d2/rest/context/jc/PluginRestConfig_D2SVROPView.java - Java
configuration for spring components like REST controller, Beans etc.

src/main/java/com/opentext/d2/smartview/d2svropview/D2SVROPViewPlugin.java - Declares a
plugin component for D2FS.

src/main/java/com/opentext/d2/smartview/d2svropview/api/D2SVROPViewVersion.java - Holder for
plugin identification information. Loads relevant data from d2svropview-version.properties file
resource.

src/main/java/com/opentext/d2/smartview/d2svropview/rest/package-info.java - Declares package
metadata for JDK and IDE.

src/main/java/com/opentext/d2/smartview/d2svropview/rest/webfs.custom/PermissionActionServic
e.java - Defines a custom service to fetch the basic permissions for the given object id. So the menu
will have reference to the method 'getPermissions' which will triggered from the menu action.

| | | action.icons.js
| | |
| | \---action_icons
| | action_sample_icon.svg
| | action_view_perms32.svg
| |
| \---test
| Gruntfile.js
| karma.conf.js
|
\---target

http://localhost:7777/d2sv-sdk/23.4.0/general/understand.d2sv.plugin

http://localhost:7777/d2sv-sdk/23.4.0/ 109/176

View permission menu configuration in back-end and its display & execution
on the front-end

src/main/resources/strings/menu/MenuContext/MenuContext_en.properties - Labels associated
with the dynamically configured menu.

src/main/resources/xml/unitymenu/MenuContextDelta.xml - This delta menu will be used to
dynamically load the custom OOTB menu to view permissions in the D2 Smartview for the default
MenuContext.

Here the dynamic-action is used to map the method getPermissions in PermissionActionService
when the menuAction is triggered from UI. dynamic-action will also have reference to the target UI
action to perform using the rAction

src/main/smartview/src/bundles/d2svropview-bundle.js - A portion of this file is used to refer to key
RequireJS modules that define the extensions to the toolbar and menu related D2SV UI API.

<delta>
 <insert position-before="menuToolsMassUpdate">
 <menuitem id="menuContextViewPermission">
 <dynamic-action class="com.emc.d2fs.dctm.ui.dynamicactions.actions.U4Generic"
eMethod="getPermissions" eMode="SINGLE" eService="PermissionActionService"
rAction="d2svropview/dialogs/permissions/permissions.dialog:showPermissions"
rType="JS"/>
 <condition class="com.emc.d2fs.dctm.ui.conditions.interfaces.IsMultipleSelection"
equals="false"/>
 <condition class="com.emc.d2fs.dctm.ui.conditions.options.IsPluginActivated"
value="D2SV-ReadOnlyPermission-View"/>
 </menuitem>
 </insert>
 <insert position-before="menuToolsMassUpdate">
 <separator/>
 </insert>
</delta>

define([
 'd2svropview/utils/theme/action.icons',
 'd2svropview/utils/startup',
 'd2svropview/commands/node.actions.rules',

http://localhost:7777/d2sv-sdk/23.4.0/ 110/176

src/main/smartview/src/commands/view.permission.js - A CommandModel that implements the
executable logic when a user clicks the View Permission menu on the UI. It is an extension of
CallServiceCommand which is used to take care of the forming the service method request

src/main/smartview/src/commands/node.actions.rules.js - Defines client side filtering and
association logic to attach the above view.permission.js command model implementaion to a UI
toolbar item.

src/main/smartview/src/utils/startup.js - Runs as part of D2 Smartview client-side startup flow. This
flow is executed everytime endusers reload the D2 Smartview application in their internet browser.

src/main/smartview/src/d2svropview-extensions.json - A portion of this file registers extensions to
the toolbar and menu related D2SV UI API. The corresponding portion is highlighted below

The side-panel dialog that displays permissions

 'd2svropview/commands/view.permission',
], {});

 "d2/sdk/controls/action.icons/action.icons": {
 "extensions": {
 "d2svropview": [
 "d2svropview/utils/theme/action.icons"
]
 }
 },
 "d2/sdk/commands/node.actions.rules": {
 "extensions": {
 "d2svropview": [
 "d2svropview/commands/node.actions.rules"
]
 }
 },
 "d2/sdk/utils/commands": {
 "extensions": {
 "d2svropview": [
 "d2svropview/commands/view.permission"
]
 }
 }

http://localhost:7777/d2sv-sdk/23.4.0/ 111/176

src/main/smartview/src/bundles/d2svropview-bundle.js - A portion of this file is used to refer to key
RequireJS modules that define the extensions to dialog used for the side panel as part of the
response from the menu action.

src/main/smartview/src/dialogs/permissions/permissions.dialog.js - This dialog will be used to show
a stepper wizard view. The stepper wizard will be a single step having permissions.view .

src/main/smartview/src/dialogs/permissions/permissions.view.js - The view will be used to render
data as table view. Data returned as part fo the response from the PermissionActionService be
managed by a MarionetteJS Collection permission.collection.js .

src/main/smartview/src/dialogs/permissions/impl/table.columns.js - Its a Backbone JS collection
which is used to map the columns information such as the key,title etc

Example:

src/main/smartview/src/d2svropview-extensions.json - A portion of this file registers extensions
toward collections used in handling the list of permissions. The corresponding portion is
highlighted below

define([
 ...
 'd2svropview/dialogs/permissions/permissions.dialog'
], {});

{
 key: 'base_permission',
 column_key: 'base_permission',
 sequence: 3,
 sort: false,
 definitions_order: 3,
 title: lang.colNameBasePermissions,
 type: -1,
 widthFactor: 0.7,
 permanentColumn: true // don't wrap column due to responsiveness into details row
}

http://localhost:7777/d2sv-sdk/23.4.0/ 112/176

src/main/smartview/src/dialogs/permissions/impl/permissions.collection.js - Collection is used to
parse the unformatted response data from the PermissionActionService to collection of models.
This collection is included in BrowsableMixin to have filter and sorting capability of the result set.

"d2/sdk/models/module.collection": {
 "modules": {
 "d2svropview": {
 "title": "D2SV-ReadOnlyPermission-View",
 "version": "1.0.0"
 }
 }
 }

http://localhost:7777/d2sv-sdk/23.4.0/ 113/176

D2SV Custom Widget Type Tile
D2SV custom widget type tile plugin will help the developer in solving the following scenarios

Define a custom widget type

Define a custom widget type parameter

Define a custom widget type in the landing pange

Define a shortcut tile with behavior to access the custom widget type parameter.

Instruction to try out the sample

Developer can extract the sample and build it using the workspace assistant. Once built, the distribution
is collected in 'dist' folder as D2SV-Custom-Widget-Type-1.0.0.jar which can be placed in WEB-
INF/lib directory of a deployed D2 Smartview. The same plugin jar file has to be placed in WEB-
INF/classes/plugins directory of your deployed D2-Config application. Subsequently, edit WEB-
INF/classes/D2-Config.properties and add an entry like plugin_<sequence>=plugins/D2SV-Custom-
Widget-Type-1.0.0.jar where <sequence> is the next natural number following the existing entries of
the same pattern in the file. The application server needs to be restarted post deployment.

After restart -

Login into D2-Config and navigate to Widget view -> widget from menubar.

Create a new widget configuration and let's name it D2-CustomType and select value CustomType
for the dropdown Widget type .

Fill in other fields like Applications , label etc. as desired.

Take a note of the value in Sample text field 1 field.

Save the configuration.

From the toolbar, click Matrix to go to D2-config matrix and enable the widget configuration, you
just created, against appropriate contexts.

Navigate to Widget view -> Smart View Landing Page from menu bar and then download your
applicable landing page configuration xml file.

http://localhost:7777/d2sv-sdk/23.4.0/ 114/176

TIP

If a pre-created Smartview landing page configuration does not exist, then refer to D2
Administration Guide documentation to create the same and learn basics of landing page
structure file.

Edit your landing page configuration file and place the following xml anywhere right under
<context> tag

Save the landing structure xml file and upload it to D2-Config under the same landing page
configuration from where we downloaded it before.

Save the configuration change in D2-Config and click Tools -> Refresh cache from menubar.

Reloading the D2 Smartview at this point should show an additional shortcut in the landing page,

similar to following

 <tile-container>
 <tile name="D2-CustomType" type="CustomType">
 <theme color="shade1" type="stone1"/>
 </tile>
 </tile-container>

http://localhost:7777/d2sv-sdk/23.4.0/ 115/176

Click on the shortcut to see a browser alert with message custom parameter sample1 : Hello
World . The value Hello World comes from the Sample text field 1 field in the widget
configuration we created above.

As result of deploying this plugin, it will introduce a new widget type in the D2-Config widget types.
And the other part of the plugin binds this new widget type to a new shortcut tile in D2-Smartview
landing page.

Source code structure

D2SV-Custom-Widget-Type
|
| pom.xml
|
+---src
| \---main
| +---java
| | \---com
| | +---emc
| | | D2PluginVersion.java
| | |
| | \---opentext
| | \---d2
| | +---rest
| | | \---context
| | | \---jc
| | | PluginRestConfig_CustomWidgetType.java
| | |
| | \---smartview
| | \---customwidgettype
| | | CustomWidgetTypePlugin.java
| | |
| | +---api
| | | CustomWidgetTypeVersion.java
| | |
| | \---rest
| | package-info.java
| |
| +---resources
| | | customwidgettype-version.properties
| | | D2Plugin.properties

http://localhost:7777/d2sv-sdk/23.4.0/ 116/176

| | |
| | +---smartview
| | | SmartView.properties
| | |
| | \---strings
| | +---actions
| | | \---config
| | | \---modules
| | | \---widget
| | | \---WidgetDialog
| | | WidgetDialog_en.properties
| | |
| | \---config
| | U4Landing.properties
| | WidgetSubtype.properties
| | WidgetSubtypelist.properties
| |
| \---smartview
| | .csslintrc
| | .eslintrc-html.yml
| | .eslintrc.yml
| | .npmrc
| | config-editor.js
| | customwidgettype.setup.js
| | Gruntfile.js
| | package.json
| | server.conf.js
| |
| +---src
| | | component.js
| | | config-build.js
| | | customwidgettype-extensions.json
| | | customwidgettype-init.js
| | | Gruntfile.js
| | |
| | +---bundles
| | | customwidgettype-bundle.js
| | |
| | +---extensions
| | | custom.type.tile.behaviors.js
| | | custom.type.tiles.js
| | |
| | +---test
| | | extensions.spec.js

http://localhost:7777/d2sv-sdk/23.4.0/ 117/176

Files and their purpose

Following are the list of function oriented source files and their purpose. Other source files present
within the plugin are part of common infrastructure code and explained in Understanding D2SV plugin
project.

Custom widget type references needed for the D2-Config widget configuration and D2
Smartview landing page configuration

src/main/resources/strings/config/U4Landing.properties - Defines the custom widget type which
are supported

src/main/resources/strings/config/WidgetSubtypelist.properties - Defines the custom widget type

| | |
| | +---utils
| | | | startup.js
| | | |
| | | \---theme
| | | | action.icons.js
| | | |
| | | \---action_icons
| | | action_sample_icon.svg
| | |
| | \---widgets
| | \---shortcut.tile
| | custom.type.shortcut.behavior.js
| |
| \---test
| Gruntfile.js
| karma.conf.js
|
\---target

shortcut_types=CustomType

CustomType=true

http://localhost:7777/d2sv-sdk/23.4.0/general/understand.d2sv.plugin

http://localhost:7777/d2sv-sdk/23.4.0/ 118/176

src/main/resources/strings/config/WidgetSubtype.properties - Defines the custom widget type
parameter for the custom widget types mentioned which are supported Here the default value for
the paramter can also be provided which can be changed in the D2 Config widget configuration

src/main/resources/strings/actions/config/modules/widget/WidgetDialog/WidgetDialog_en.propert
ies - This properties file will contain the labels used for parameters for the custom type

D2 Smartview UI changes for the plugin

src/main/smartview/src/bundles/customwidgettype-bundle.js - A portion of this file is used to refer
to key RequireJS modules that define the extensions shortcut behavior API and click of the widget
tile

src/main/smartview/src/utils/theme/action.icons.js - Defines the default icon for the widgets

src/main/smartview/src/utils/startup.js - Runs as part of D2 Smartview client-side startup flow. This
flow is executed everytime end users reload the D2 Smartview application in their internet browser.

src/main/smartview/src/customwidgettype-extensions.json - A portion of this file registers
extensions to enable the custom shortcut tile for the widget configuration and also to have custom
shortcut tile behavior.

CustomType.sample1 = Hello World

label_sample1 = Sample text field 1

define([
 'customwidgettype/utils/theme/action.icons',
 'customwidgettype/utils/startup',
 'customwidgettype/extensions/custom.type.tiles',
 'customwidgettype/extensions/custom.type.tile.behaviors'
], {});

{
 "d2/sdk/utils/landingpage/tiles": {
 "extensions": {

http://localhost:7777/d2sv-sdk/23.4.0/ 119/176

src/main/smartview/src/extensions/custom.type.tiles.js - This will define the custom widget type to
the tile containers in the UI

src/main/smartview/src/extensions/custom.type.tile.behaviors.js - This will define the custom
shortcut behavior to the custom widget type CustomType

 "customwidgettype": [
 "customwidgettype/extensions/custom.type.tiles"
]
 }
 },
 "d2/sdk/widgets/shortcut.tile/shortcut.tile.behaviors": {
 "extensions": {
 "customwidgettype": [
 "customwidgettype/extensions/custom.type.tile.behaviors"
]
 }
 }
}

define(['d2/sdk/utils/widget.constants'], function(widgetConstants) {
 'use strict';

 function validateConfigCustomType0() {
 var validation = {
 status: true
 };
 // TODO: Validates widgetConfig. Set validation.status = false if the validation
should fail.
 return validation;
 }
 // List of landing tile definitions
 return [{
 type: 'CustomType',
 icon: 'custom-widget-type',
 isShortcut: true,
 tileConfigType: widgetConstants.TileConfigTypes.WIDGET,
 validateConfig: validateConfigCustomType0
 }];
});

http://localhost:7777/d2sv-sdk/23.4.0/ 120/176

src/main/smartview/src/widgets/shortcut.tile/custom.type.shortcut.behavior.js -Define custom
shortcut behavior with the onclick action to perform. This will prompt the user with the default
parameter value configured for the CustomType

define(['customwidgettype/widgets/shortcut.tile/custom.type.shortcut.behavior'],
function(CustomTypeShortcutBehavior) {
 'use strict';
 return [{
 type: 'CustomType',
 behaviorClass: CustomTypeShortcutBehavior
 }];
});

define([
 'd2/sdk/widgets/shortcut.tile/shortcut.tile.behavior'
], function(ShortcutTileBehaviorImpl){
 'use strict';

 var CustomTypeShortcutBehavior = ShortcutTileBehaviorImpl.extend({
 constructor: function CustomTypeShortcutBehavior() {
 CustomTypeShortcutBehavior.__super__.constructor.apply(this, arguments);
 },
 onClick: function() {
 alert('custom parameter sample1 : '+this.options.widgetParams.sample1);
 }
 });

 return CustomTypeShortcutBehavior;
});

http://localhost:7777/d2sv-sdk/23.4.0/ 121/176

Custom Table Cell View sample
Custom Table cell view provides option to render column specific custom cell layout. With this cell view
can be visually improved. As out of the box, document modified user column shows information only in
text. In this sample modified user information is shown with initials.

This sample shows

How to define a Custom table cell view implementation.

Instruction to try out the sample

Build the plugin using npm run build from SDK workspace root.

Copy D2-CustomTableCell-1.0.0.jar from 'dist' folder in workspace root and paste it inside WEB-
INF/lib folder of a deployed D2 Smartview application.

Restart application server on which D2 Smartview is deployed.

Login into D2-Smartview and navigate to any Doclist widget view.

Using the 'Table settings' add column Modified By to display, if not already added.

Check, the Modified By column shows with a colored letter-avatar-icon along with the textual
username(only username is shown without this plugin).

Source code structure

D2-CustomTableCell
|
| pom.xml
|
+---src
| \---main
| +---java
| | \---com
| | +---emc
| | | D2PluginVersion.java
| | |
| | \---opentext

http://localhost:7777/d2sv-sdk/23.4.0/ 122/176

| | \---d2
| | +---rest
| | | \---context
| | | \---jc
| | | PluginRestConfig_CustomTableCell.java
| | |
| | \---smartview
| | \---customtablecell
| | | CustomTableCellPlugin.java
| | |
| | +---api
| | | CustomTableCellVersion.java
| | |
| | \---rest
| | package-info.java
| |
| +---resources
| | | customtablecell-version.properties
| | | D2Plugin.properties
| | |
| | \---smartview
| | SmartView.properties
| |
| \---smartview
| | .csslintrc
| | .eslintrc-html.yml
| | .eslintrc.yml
| | .npmrc
| | config-editor.js
| | customtablecell.setup.js
| | Gruntfile.js
| | package.json
| | server.conf.js
| |
| +---src
| | | component.js
| | | config-build.js
| | | customtablecell-extensions.json
| | | customtablecell-init.js
| | | Gruntfile.js
| | |
| | +---bundles
| | | customtablecell-bundle.js
| | |

http://localhost:7777/d2sv-sdk/23.4.0/ 123/176

Files and their purpose

Following are the list of function oriented source files and their purpose. Other source files present
within the plugin are part of common infrastructure code and explained in Understanding D2SV plugin
project.

Custom table cell view

src/main/smartview/src/table/cell/modified.by/modified.by.view.js - Define the custom cell view
implementation.

src/main/smartview/src/table/cell/modified.by/impl/modified.by.hbs - Handlebar template for
custom cell view.

| | +---table
| | | \---cell
| | | \---modified.by
| | | | modified.by.view.js
| | | |
| | | \---impl
| | | modified.by.css
| | | modified.by.hbs
| | |
| | +---test
| | | extensions.spec.js
| | |
| | \---utils
| | | startup.js
| | |
| | \---theme
| | | action.icons.js
| | |
| | \---action_icons
| | action_sample_icon.svg
| |
| \---test
| Gruntfile.js
| karma.conf.js
|
\---target

http://localhost:7777/d2sv-sdk/23.4.0/general/understand.d2sv.plugin

http://localhost:7777/d2sv-sdk/23.4.0/ 124/176

src/main/smartview/src/table/cell/modified.by/impl/modified.by.css - CSS for styling custom cell
view.

src/main/smartview/src/utils/startup.js - Loaded "modified.by.view.js" in "startup.js".

http://localhost:7777/d2sv-sdk/23.4.0/ 125/176

D2SV Object On Click Sample
Object on click actions extension provides option override the default action on the object. With this
default action for an object can be controlled with a predicate condition. So default action can be
defined based on rules.

This sample shows

How to customize the default action for an object.

Instruction to try out the sample

Build the plugin using npm run build from SDK workspace root.

Copy D2SV-Object-OnClick-Actions-1.0.0.jar from 'dist' folder in workspace root and paste it
inside WEB-INF/lib folder of a deployed D2 Smartview application.

Restart application server on which D2 Smartview is deployed.

Login into D2-Smartview and navigate to any Doclist widget view.

Execute default action for PDF file and content less object.

While executing default action for .txt document, Modal alert will be shown.

While executing default action for .png document, Toast message will be shown.

Source code structure

D2SV-Object-OnClick-Actions
| pom.xml
|
+---src
| \---main
| +---java
| | \---com
| | +---emc
| | | D2PluginVersion.java
| | |
| | \---opentext
| | \---d2

http://localhost:7777/d2sv-sdk/23.4.0/ 126/176

| | +---rest
| | | \---context
| | | \---jc
| | |
PluginRestConfig_ObjectOnClickActions.javations.javal.java
| | |
| | \---smartview
| | \---objectonclickactions
| | | ObjectOnClickActionsPlugin.java
| | |
| | +---api
| | | ObjectOnClickActionsVersion.java
| | |
| | \---rest
| | package-info.java
| |
| +---resources
| | | D2Plugin.properties
| | | objectonclickactions-version.properties
| | |
| | \---smartview
| | SmartView.properties
| |
| \---smartview
| | .csslintrc
| | .eslintrc-html.yml
| | .eslintrc.yml
| | .npmrc
| | config-editor.js
| | Gruntfile.js
| | objectonclickactions.setup.js
| | package.json
| | server.conf.js
| |
| +---src
| | | component.js
| | | config-build.js
| | | Gruntfile.js
| | | objectonclickactions-extensions.json
| | | objectonclickactions-init.js
| | |
| | +---bundles
| | | objectonclickactions-bundle.js
| | |

http://localhost:7777/d2sv-sdk/23.4.0/ 127/176

Files and their purpose

Following are the list of function oriented source files and their purpose. Other source files present
within the plugin are part of common infrastructure code and explained in Understanding D2SV plugin
project.

D2SV Custom Default Actions Sample

src/main/smartview/src/extensions/object.onclick.actions.rules.js - Defined ruled for on click action
of a document.

src/main/smartview/src/commands/open.modal.alert.js - Sample command for executing object
on-click action with modal alert.

src/main/smartview/src/commands/open.toast.message.js - Sample command for executing object
on-click action with toast message.

| | +---commands
| | | | open.modal.alert.js
| | | | open.toast.message.js
| | | |
| | | \---nls
| | | | lang.js
| | | |
| | | \---root
| | | lang.js
| | |
| | +---extensions
| | | object.onclick.actions.rules.js
| | |
| | +---test
| | | extensions.spec.js
| | |
| | \---utils
| | | startup.js
| | |
| | \---theme
| | | action.icons.js
| | |
| | \---action_icons
| | action_sample_icon.svg

http://localhost:7777/d2sv-sdk/23.4.0/general/understand.d2sv.plugin

http://localhost:7777/d2sv-sdk/23.4.0/ 128/176

Open a cabinet/folder in Doclist
This sample shows how to open the default Doclist widget in D2 Smartview at a specific cabinet or
folder. This sample leverages a command implementation named Browse from D2 Smartview runtime
to do so.

Instruction to try out the sample

Build the plugin using npm run build from SDK workspace root.

Copy D2SV-OpenFolder-Doclist-1.0.0.jar from 'dist' folder in workspace root and paste it inside
WEB-INF/lib folder of a deployed D2 Smartview application.

Restart application server on which D2 Smartview is deployed.

Login into D2-Smartview and navigate to any cabinet or folder of choice in Doclist widget.

Copy the Documentum Object ID of cabinet/folder from browser address bar.

Navigate to landing page.

Click user profile icon and select OpenFolder menu item.

Paste the copied Object ID in Enter folder ID field of OpenFolder dialog.

Click Open button in the dialog footer to close the dialog and open Doclist at the cabinet/folder
identified by the pasted value.

Source code structure

D2SV-OpenFolder-Doclist
|
| pom.xml
|
+---src
| \---main
| +---java
| | \---com
| | +---emc
| | | D2PluginVersion.java
| | |
| | \---opentext

http://localhost:7777/d2sv-sdk/23.4.0/ 129/176

| | \---d2
| | +---rest
| | | \---context
| | | \---jc
| | | PluginRestConfig_D2SVOFDoclist.java
| | |
| | \---smartview
| | \---d2svofdoclist
| | | D2SVOFDoclistPlugin.java
| | |
| | +---api
| | | D2SVOFDoclistVersion.java
| | |
| | +---dialogs
| | | OpenFolder.java
| | |
| | \---rest
| | package-info.java
| |
| +---resources
| | | D2Plugin.properties
| | | d2svofdoclist-version.properties
| | |
| | +---smartview
| | | SmartView.properties
| | |
| | +---strings
| | | +---dialog
| | | | \---OpenFolder
| | | | OpenFolder_en.properties
| | | |
| | | \---menu
| | | \---MenuUser
| | | MenuUser_en.properties
| | |
| | \---xml
| | +---dialog
| | | OpenFolder.xml
| | |
| | \---unitymenu
| | MenuUserDelta.xml
| |
| \---smartview
| | .csslintrc

http://localhost:7777/d2sv-sdk/23.4.0/ 130/176

Files and their purpose

| | .eslintrc-html.yml
| | .eslintrc.yml
| | .npmrc
| | config-editor.js
| | d2svofdoclist.setup.js
| | Gruntfile.js
| | package.json
| | server.conf.js
| |
| +---src
| | | component.js
| | | config-build.js
| | | d2svofdoclist-extensions.json
| | | d2svofdoclist-init.js
| | | Gruntfile.js
| | |
| | +---bundles
| | | d2svofdoclist-bundle.js
| | |
| | +---extensions
| | | dialog.actions.js
| | |
| | +---test
| | | extensions.spec.js
| | |
| | \---utils
| | | startup.js
| | | utils.js
| | |
| | \---theme
| | | action.icons.js
| | |
| | \---action_icons
| | action_sample_icon.svg
| |
| \---test
| Gruntfile.js
| karma.conf.js
|
\---target

http://localhost:7777/d2sv-sdk/23.4.0/ 131/176

Following are the list of function oriented source files and their purpose. Other source files present
within the plugin are part of common infrastructure code and explained in Understanding D2SV plugin
project.

Utility to open Doclist widget at a given folder

src/main/smartview/src/utils/utils.js - Defines a function openFolder that in turn executes Browse
command instance with a given folder ID set as an attribute to a NodeModel instance.

TIP

The Browse command has a multi-faceted implementation i.e. it behaves diffrently based on
type of the object. E.g Instead of cabinet/folder, if a document's object ID is used then it opens
the Overview perspective for it.

D2FS dialog to collect folder ID

The remaining part of the sample defines a user profile menu item which shows a D2FS dialog having a
single text field to collect cabinet/folder ID.

src/main/java/com/opentext/d2/smartview/d2svofdoclist/dialogs/OpenFolder.java - Java class file
behind the OpenFolder dialog.

src/main/resources/strings/dialog/OpenFolder/OpenFolder_en.properties - Defines labels used in
OpenFolder dialog.

src/main/resources/strings/menu/MenuUser/MenuUser_en.properties - Defines label for the menu
item in user profile.

src/main/resources/xml/dialog/OpenFolder.xml - Form definition for the OpenFolder dialog.

src/main/resources/xml/unitymenu/MenuUserDelta.xml - Defines the OpenFolder menu item under
user profile through delta menu concept.

src/main/smartview/src/extensions/dialog.actions.js - Defines the code to be executed for Open
button in the dialog footer. Invokes openFolder in src/main/smartview/src/utils/utils.js with
collected ID.

http://localhost:7777/d2sv-sdk/23.4.0/general/understand.d2sv.plugin

http://localhost:7777/d2sv-sdk/23.4.0/ 132/176

Action icons catalog
Here is a list of built-in action icons from D2 Smartview runtime and its framework.

CAUTION

Action icons listed under CSUI & SVF may change without notice.

TIP

Hovering with your mouse over an icon below shows the icon's referrable name as tooltip.

D2 Smartview icons

CSUI icons

http://localhost:7777/d2sv-sdk/23.4.0/ 133/176

SVF icons

http://localhost:7777/d2sv-sdk/23.4.0/ 134/176

D2FS REST services developer guide
This document helps to familiarize one with the existing D2FS REST endpoints and learn about the
standards and conventions used in developing those endpoints.

Cannot GET /bundle/pdf/OpenText%20Documentum%20D2FS%20REST%20Services%20Development%20Guide.pd

http://localhost:7777/d2sv-sdk/23.4.0/ 135/176

Understanding D2SV plugin project
Each D2SV plugin project is a hybrid Maven + NodeJS project having some Java, Javascript and a few
static resources as part of its source code. On the outer side, the source code is organized in a Maven
project layout and an additional source directory src/main/smartview is used to house Javascript
source code and directory follows an NPM project structure.

Here we list the directories and files found in a bare-minimum project and outline their purpose. For the
purpose of listing, we create a new plugin project by following -

Execute npm start in the workspace root directory to fire up the Workspace Assistant

Select option Create a new plugin project

Answer the follow-up questions as -
Directory name to save this plugin project in: plugins

Maven group-id of the plugin: com.opentext.d2.smartview

Name(maven artifact-id) of the plugin: D2SV-TEST

Version of the plugin: 1.0.0

One liner description of the plugin(shows up everywhere in D2 runtime): D2SV-TEST

Enter package namespace for the plugin(used as prefix/suffix to generate Java classes &
properties, also its lowercase format is used as base Java package name for the plugin & D2SV
UI bundle): D2SVTEST

Include support for D2SV UI: Yes

After the assistant runs successfully, it would create a new plugin project in plugins/D2SV-TEST
directory.

Plugin project layout

D2SV-TEST
|
| pom.xml
|
+---src

http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_00_ws_overview

http://localhost:7777/d2sv-sdk/23.4.0/ 136/176

| \---main
| +---java
| | \---com
| | +---emc
| | | D2PluginVersion.java
| | |
| | \---opentext
| | \---d2
| | +---rest
| | | \---context
| | | \---jc
| | | PluginRestConfig_D2SVTEST.java
| | |
| | \---smartview
| | \---d2svtest
| | | D2SVTESTPlugin.java
| | |
| | +---api
| | | D2SVTESTVersion.java
| | |
| | \---rest
| | package-info.java
| |
| +---resources
| | | D2Plugin.properties
| | | d2svtest-version.properties
| | |
| | \---smartview
| | SmartView.properties
| |
| \---smartview
| | .csslintrc
| | .eslintrc-html.yml
| | .eslintrc.yml
| | .npmrc
| | config-editor.js
| | d2svtest.setup.js
| | Gruntfile.js
| | package.json
| | server.conf.js
| |
| |
| +---lib (shortcut to javascript & java libraries)
| +---node_modules (shortcut to NPM based dependencies used to build/serve the

http://localhost:7777/d2sv-sdk/23.4.0/ 137/176

Files and their purpose

/

pom.xml - Maven build file. Used to build the plugin from source code to its distributable
format.

Javascript portion of code)
| +---out-debug (directory will contain compiled Javascript code in non-
minified format)
| +---out-release (directory will contain compiled Javascript code in minified
format)
| |
| +---src
| | | component.js
| | | config-build.js
| | | d2svtest-extensions.json
| | | d2svtest-init.js
| | | Gruntfile.js
| | |
| | +---bundles
| | | d2svtest-bundle.js
| | |
| | +---test
| | | extensions.spec.js
| | |
| | \---utils
| | | startup.js
| | |
| | \---theme
| | | action.icons.js
| | |
| | \---action_icons
| | action_sample_icon.svg
| |
| \---test
| Gruntfile.js
| karma.conf.js
|
\---target

http://localhost:7777/d2sv-sdk/23.4.0/ 138/176

src/main/java/ - Directory containing all Java source code

com/emc/D2PluginVersion.java - Declares identification information for the entire plugin using
D2SVTESTVersion class.

com/opentext/d2/rest/context/jc/PluginRestConfig_D2SVTEST.java - Java configuration for
spring components like Beans, Interceptor, Filter etc. This class also declares a component
scanner for Spring runtime to automatically load REST Controller and related components.

com/opentext/d2/smartview/d2svtest/D2SVTESTPlugin.java - Declares a blanket plugin.
Additional code could be put inside this class to implement any functional service plugin.

com/opentext/d2/smartview/d2svtest/api/D2SVTESTVersion.java - Holder for plugin
identification information. Loads relevant data from d2svtest-version.properties file
resource.

com/opentext/d2/smartview/d2svtest/rest/package-info.java - Declares package metadata for
JDK and IDE.

src/main/resources/ - Directory containing all plugin related metadata and other static resources

smartview/SmartView.properties - Descriptor for D2SV UI runtime. Content of this file is read
by D2SV UI runtime and appropriate UI artifacts from this plugin are discovered and linked to
the UI.

INFO

This file won't be present for the plugins where Smartview UI support is not enabled.

DANGER

Changing content of this file will bring about runtime incompatibility and the UI artifacts
will never get discovered by D2SV UI runtime.

D2Plugin.properties - Another descriptor for D2SV plugin system to identify this plugin
separately from other plugins deployed in the same runtime. Content of this file is interpreted
as a uniqueue namespace identifier.

DANGER

http://localhost:7777/d2sv-sdk/23.4.0/ 139/176

Changing content of this file will lose the namespace convention used throughout the
source code and makes this plugin unmanageable by the SDK as well as D2SV runtime.

d2svtest-version.properties - Contains name, version and base package for Java classes defined
by this plugin. This file is read by D2SVTESTVersion class and supplies the metadata
information to D2SV plugin system.

DANGER

Changing content of this file may render D2SV runtime to correctly load class files from
the deployed plugin jar.

src/main/smartview/ - Home of the NPM project that represents the Javascript and related source
code for D2SV UI.

DANGER

Even though the source code here is layed out as an NPM project but you should never
execute npm install command in this directory. Doing so will completely break the setup as
the node_modules folder is a softlinked directory and managed by the package.json from
SDK workspace root.

TIP

If for some reason an additional NPM based dependency is required for a plugins UI code, the
dependency should be added in the package.json from SDK workspace root, subsequently
followed by npm install command execution in the workspace root directory itself. After that
the plugin specific Javascript code can refer to it in usual manner.

lib - Shortcut to the lib directory from SDK workspace root. The directory hosts all D2SV UI
dependency libraries, that are used while running the Javascript only portion through a NodeJS
light-server.

node_modules - Shortcut to the node_modules directory from SDK workspace root. The
directory hosts all NPM packages used to test, build the Javascript source code and pack those

http://localhost:7777/d2sv-sdk/23.4.0/ 140/176

into distributable format, besides serving them through NodeJS server for debugging/testing
purposes.

out-debug - The directory that will contain non-minified output from Javascript code post
compilation.

out-release - The directory that will contain minified output from Javascript code post
compilation.

config-editor.js - Temporary RequireJS configuration override file used while building the UI
code.

d2svtest.setup.js - NodeJS module to setup/re-instate the directory softlinks for lib and
node_modules .

Gruntfile.js - Master task definition file used by Grunt while testing/building the source code.

package.json - NPM package manifest for the UI code.

server.conf.js - Lets configure the remote URL to use as back-end while serving the application
through NodeJS.

.csslintrc - Linter rules for CSS files. Used to validate if all CSS source files meet D2SV standard.

.eslintrc.yml - Linter rules for Javascript files. Used to validate if all JS source code meet D2SV
standard.

.eslintrc-html.yml - Linter rules for HTML & HBS(Handlebars HTML template) files. Used to
validate if matching source files meet D2SV standard.

.npmrc - Local NPM configuration, used by NodeJS engine before running any NPM/NodeJS
scripts.

INFO

All these HTML, JS, JSON, CSS etc files are not part of the actual plugin source code. Some
of them facilitate build, test, packaging of the actual source code whereas, others enable
serving the entire front-end of D2SV application including this plugin and connects it to a
remote back-end for testing/debugging purposes. Any of these files should not be
modified.

src/bundles/d2svtest-bundle.js - Plugin UI bundle, it must contain direct/indirect reference to
all AMD modules defined in this plugin so that they are correctly packaged during build.

http://localhost:7777/d2sv-sdk/23.4.0/ 141/176

INFO

AMD modules, that are referred by atleast one other AMD module through define() , are
called statically referred modules. Dynamically referred AMD modules are never referred
by any other module using define() rather they are referred only through require() .
The UI bundle must contain direct reference to all dynamically referred modules. It's very
important to know that for an entry, all other statically referred modules from that
module are automatically added e.g. suppose, A statically refers to B and that statically
refers to C but C dynamically refers to D, in this scenario, you should put an entry for A
and an entry for C to completely refer all the modules A, B, C, D.

src/test/extensions.spec.js - Sample unit test. Shows how to write unit tests for each JS module
in this plugin.

src/utils/theme/action_icons/action_sample_icon.svg - A sample icon resource, could be used
to represent a menu action. To know more about action icons and how to use them in UI refer
to Use icons in D2SV

src/utils/theme/action.icons.js - Holder of all the action icons. This file is auto-generated
everytime the UI code is being built.

TIP

After adding a new svg file in action_icons directory, you need to build the UI code
once to re-generate this holder file.

src/utils/startup.js - Hooks to D2SV application startup phase. Generally used to run additional
custom logic that has to happen during the startup i.e before any of the UI components starts
to render on the page. Provides two hook points, namely beforeStartup() and
afterStartup() their purpose is pretty much self explanatory.

src/component.js - Declares the UI bundles in this plugin. Used by the UI framework while
building the UI code as well as used while serving the code through NodeJS server. This file
normally wouldn't require any change unless the UI source code declares a RequireJS plugin.

CAUTION

http://localhost:7777/d2sv-sdk/23.4.0/general/howto/1_05_use_icons

http://localhost:7777/d2sv-sdk/23.4.0/ 142/176

At this time only one UI bundle per D2SV plugin is supported by the runtime. So you
must not try to split the d2svtest-bundle.js file into multiple smaller bundles.

src/config-build.js - RequireJS configuration used while building the UI code. This file is auto-
generated every time the UI code is being built. So any changes done to this file gets
automatically discarded.

src/d2svtest-init.js - Used to supply additional RequireJS configuration to AMD modules in this
plugin. Also can be used to re-configure any other AMD modules defined by the D2SV UI itself
or any of its dependencies.

INFO

All the plugins deployed on D2 Smartview do not have a mechanism to specify their
loading order. So if multiple plugins try to configure the same AMD module then
whichever plugin is loaded last, configuration from that plugin will apply.

src/d2svtest-extensions.json - Single file to register all the D2SV UI API extensions defined by
this plugin.

src/Gruntfile.js - Task definition file used to build the source code.

test/Gruntfile.js - Task definition file used to start karma server to run unit test on source
code/build output.

test/karma.conf.js - Karma configuration file used while running unit tests. It leverages the base
configuration from @dctm/dctm-web-core NPM package which is a crucial part of the UI
framework and comes pre-bundled within the SDK.

http://localhost:7777/d2sv-sdk/23.4.0/ 143/176

Where to start?
Well, D2 Smartview UI has many UI constructs like command, shotcut tile, list tile, application scope
perspective, rest-controller etc. Answer to the question, depends on what you're trying to accomplish.

A good starting point might be to look at the packaged samples. D2-AdminGroups sample specifically
covers all of the above stated constructs.

After extracting the sample, go thorugh D2 Admin Groups Sample documentation to know about the
key concepts and strctures implemented in the sample. Then -

1. Build it once

2. Deploy the compiled artifact in WEB-INF\lib folder of a running D2-Smartview

3. Follow How to debug to run the sample in debug mode and put break points(in internet browser's
developer console) at at different javascript modules in the project.

Once familiarized, try exploring different workspace assistant options to add new components to the
sample or create a fresh plugin project and add it there to see how it works.

TIP

Familiarize yourself with the rest of "How to" topics. The API documentation helps getting to know
different parts of the front-end & back-end components.

http://localhost:7777/d2sv-sdk/23.4.0/general/samples/3_01_admin_groups
http://localhost:7777/d2sv-sdk/23.4.0/general/howto/1_01_debug_sv_ui
http://localhost:7777/d2sv-sdk/23.4.0/api_overview

http://localhost:7777/d2sv-sdk/23.4.0/ 144/176

Overview
The API includes classes, objects, methods & extension points that could be used to enhance/alter
existing components of D2SV runtime or write brand new components for it.

The D2SV runtime is comprised of

FRONT-END

Runs on Internet browsers, written using Javascript, HTML, CSS.

Components of the application are loaded using RequireJS framwork that comes bundled with the
runtime. A bunch of other open-source libraries are pre-packed as part of the runtime. Below is a
list of libraries and their RequireJS module dependency path -

BackboneJS (nuc/lib/backbone)

MarionetteJS (nuc/lib/marionette)

UnderscoreJS (nuc/lib/underscore)

jQyery (nuc/lib/jquery)

MomentJS (nuc/lib/moment)

jQuery Fancy tree (d2/lib/fancytree/jquery.fancytree)

D3 JS (csui/lib/d3)

Available requirejs plugins -

i18n - Loads a localization module

hbs - Loads handlebar template files (*.hbs)

json - Loads JSON files (*.json)

css - Loads CSS files (*.css)

http://localhost:7777/d2sv-sdk/23.4.0/ 145/176

BACK-END

Runs on Web application container, Written in Java.

http://localhost:7777/d2sv-sdk/23.4.0/ 146/176

Context
Gathers models, collections, or plain objects to be shared among multiple scenarios and fetch them
together. Objects in context are managed by their factories.

This is a base class. PageContext , PortalContext , BrowsingContext or PerspectiveContext are classes
to create instances of.

Factory

Is the "overlord" of objects in the context. The parent class returned from
'nuc/contexts/factories/factory' is usually called by different names like ObjectFactory , ModelFactory
or CollectionFactory to express what the descended factory will take care of.

Creates an instance of the object, which will be returned to the caller.

Assigns a unique prefix to the object, so that the same object can be obtained using the factory at
different places.

Can override how the model or collection is fetched.

A factory has to specify a unique propertyPrefix in the prototype and set the object managed by it to
this.property :

// Create a new context.
var context = new PageContext();
// Get the (main contextual) authenticated user
var currentUser = context.getModel(UserModelFactory);

var TestObjectFactory = ObjectFactory.extend({

 propertyPrefix: 'test',

 constructor: function TestObjectFactory(context, options) {
 ObjectFactory.prototype.constructor.apply(this, arguments);

http://localhost:7777/d2sv-sdk/23.4.0/ 147/176

Objects are stored using propertyPrefix in the context. The propertyPrefix is used alone for globally
unique objects, or as a base for multiple objects having the same factory, but different attributes:

Factory can be used just for the object creation, if you don't want to learn about its constructor
parameters.

Fetchable Factory

Exposes fetch method, which should fetch its model. Whenever the context is fetched, this method will
be called.

 this.property = new TestObject();
 }

});

// Request an object with the default identifier
// (internally stored with prefix 'test')
var test = context.getObject(TestObjectFactory);

// Request a separate object with a specific identifier
// (internally stored with prefix 'test-id-1')
var test = context.getObject(TestObjectFactory, {
 attributes: {id: 1}
});

// Request a standalone object, not shareable by the context
var test = context.getObject(TestObjectFactory, {
 unique: true,
 temporary: true,
 detached: true
});

var FavoriteCollectionFactory = CollectionFactory.extend({

 propertyPrefix: 'favorites',

http://localhost:7777/d2sv-sdk/23.4.0/ 148/176

The isFetchable method can be added to be able to check dynamically, if the object is fetchable or
not.

 constructor: function FavoritesCollectionFactory(context, options) {
 CollectionFactory.prototype.constructor.apply(this, arguments);

 var connector = context.getObject(ConnectorFactory, options);
 this.property = new FavoritesCollection(undefined, {
 connector: connector,
 autoreset: true
 });
 },

 fetch: function (options) {
 return this.property.fetch(options);
 }

});

var NodeModelFactory = ModelFactory.extend({

 propertyPrefix: 'node',

 constructor: function NodeModelFactory(context, options) {
 ModelFactory.prototype.constructor.apply(this, arguments);

 var connector = context.getObject(ConnectorFactory, options);
 this.property = new NodeModel(undefined, {connector: connector});
 },

 isFetchable: function () {
 return this.property.isFetchable();
 },

 fetch: function (options) {
 return this.property.fetch(options);
 }

});

http://localhost:7777/d2sv-sdk/23.4.0/ 149/176

Configurable Factory

Factories are usually created once per object type, but they need to be able to create multiple object
instances. With just the factory provided, the object will be constructed with default options:

With the second argument, additional options can be passed to control the object creation. The
attributes will be used to uniquely stamp the new object, so future calls to getObject with the same
attributes will return the same object. Also the attributes will be passed to the constructor of the
object, if it is a Backbone.Model :

Below the property called like the factory prefix you can pass additional options to the newly created
object's constructor by the options property:

If the new object is a Backbone.Model , you can specify different attributes for the constructor, than the
attributes, which control the unique stamp of the object. While the former should be as minimum as to

// Get the (main contextual) node
var currentNode = context.getModel(NodeModelFactory);

// Get original where the (main contextual) node points to, if it is
// a shortcut
var originalId = currentNode.get('original_id'),
 original = context.getModel(NodeModelFactory, {
 attributes: {id: originalId}
 });

// Get original where the (main contextual) node points to, if it is
// a shortcut and make it fetchable by the connector
var originalId = currentNode.original.get('id'),
 original = context.getModel(NodeModelFactory, {
 attributes: {id: originalId},
 node: {
 options: {connector: currentNode.connector}
 }
 });

http://localhost:7777/d2sv-sdk/23.4.0/ 150/176

compose the unique stamp, the latter could be more complete to pre-initialize the new object:

Finally, if you already have the new object created and you only need the context to make it shareable,
you can pass it to the property called like the factory as-is:

Detached Objects

Objects, which are added to the context after the context was fetched are needed to be fetched
manually, if they need fetching at all. Also, as manually fetched objects, when the context is re-fetched,
they are not re-fetched again. Their users decide, when they should be re-fetched.

// Get original where the (main contextual) node points to, if it is
// a shortcut, make it fetchable by the connector, but pre-initialize
// it will all properties available so far
var originalId = node.original.get('id'),
 original = context.getModel(NodeModelFactory, {
 attributes: {id: originalId},
 node: {
 attributes: node.original.attributes,
 options: {connector: currentNode.connector}
 }
 });

// Get original where the (main contextual) node points to, if it is
// a shortcut, and share the same object, which has been obtained
// with the contextual node
var originalId = node.original.get('id'),
 original = context.getModel(NodeModelFactory, {
 attributes: {id: originalId},
 node: node.original
 });

// User information, which does not refresh automatically and will be
// discarded, when clear() is called on the context
var ownerId = node.get('owner_user_id'),
 owner = context.getModel(MemberModelFactory, {
 attributes: {id: ownerId},

http://localhost:7777/d2sv-sdk/23.4.0/ 151/176

Detached objects should merge the Fetchable mixin, which allows fetching only once on demand by
ensureFetched :

Permanent Objects

Objects like the authenticated user need not be re-created during the application lifecycle. After being
requested for the first time, they should remain in the context for all scenarios. (The only way how to re-
create them is to reload the entire application - the application page.)

Permanent objects are usually detached too, unless they should be re-fetched with every context re-
fetch.

Temporary Objects

 detached: true
 });

// Make sure, that the model was fetched once, before accessing
// its properties
owner
 .ensureFetched()
 .done(function () {
 console.log('Login:', owner.get('name'));
 });

// User information, which does not refresh automatically and will not be
// discarded, when clear() or fetch() is called on the context
var ownerId = node.get('owner_user_id'),
 owner = context.getModel(MemberModelFactory, {
 attributes: {id: ownerId},
 permanent: true,
 detached: true
 });

http://localhost:7777/d2sv-sdk/23.4.0/ 152/176

Objects like the original node need to be shared across function scopes and object boundaries, but
should not be re-created and re-fetched multiple times. When the lifecycle of the current (main
contextual) node ends, they should be discarded from the context, so that they would not get re-
fetched with the new context content.

Factory Life-Cycle

The context is a single-instance object that lives as long as the web page lives. (There may be multiple
contexts, if parts of the page were supposed to work separately, but that would be a rare case.) The web
page serves different purposes during its life. Having just single context instance means that the content
of the context has to be able to be exchanged to reflect the current page content.

The context supports two changes of the page content:

refresh - the page (views) will be reused, only the data will be reloaded

exchange - the page will be rebuilt (current views will be destroyed and new ones will be created)
and new data wil be loaded

These changes can be induced by the following methods of the context: clear and fetch . The clear
removes the factories and thus their data from the context. The fetch reloads (or loads, initially) the
data by letting the factories fetch.

// Shareable original node information, which will be discarded, as soon
// as clear() or fetch() is called on the context
var originalId = shortcut.original.get('id'),
 original = context.getModel(NodeModelFactory, {
 attributes: {id: originalId},
 temporary: true
 });

// render a new page <----------------------------------+
context.getObject(...) // get objects from the context |
context.fetch() // fetch collected factories <--+ |
// work with the page | |
// open another object on the same page ---------------+ |

http://localhost:7777/d2sv-sdk/23.4.0/ 153/176

If the page has to show a different scenario (exchange), the clear will be called, then the page will be
rebuilt and eventually the fetch will be called to load the data. If the page should show the same
scenario with different data (refresh), just fetch will be called.

Factories together with the objects that they maintain can be removed from the context when fetch
and clear are called to allow some objects to stay forever and the other objects temporarily only after
new data are to be loaded. When factories are used to request objects from context, they can be passed
options, or these options can be set to this.options in the factory's constructor: permanent and
temporary take care of the life-cycle, detached and unique have other purposes.

How factories are removed from the context when clear and fetch are called:

operation / flag refresh (fetch) exchange (clear + fetch)

permanent stay stay

normal stay drop

temporary drop drop

The detached flag does not affect the factory's life. It prevents the factory ever getting fetched. The
unique flag appends a unique number to the factory prefix, so that one factory can be put to the
context multiple times to maintain different objects.

Declarative options control what factories are allowed to fetch when fetch is called. In addition to the
static rules below, the actual fetchability is checked by the isFetchable method of the context:

method / flag fetch

permanent allowed

context.clear() // prepare for the next page |
// navigate to other page --------------------------------+

http://localhost:7777/d2sv-sdk/23.4.0/ 154/176

method / flag fetch

normal allowed

temporary N/A (*)

detached forbidden

(*) Temporary factories are removed from the context when the fetch method starts executing. It does
not make sense to discuss their fetchability.

Methods

getObject(factory, options): object

Returns an object maintained by the specified factory. If the object has not existed yet, it will be created,
otherwise the previously created instance will be returned.

The object existence is made unique by the property prefix defined by the factory. The full unique
property stamp consists of this prefix and of the context attributes , which can be passed in the
second argument.

If the object is to be created, the second argument can carry parameters for its constructor under the
property named by the factory's property prefix; usually attributes and options for a model or
models and options for a collection. Instead of constructor parameters, this property can point to an
already created object, so that the factory just stores it as-is.

The second argument can contain boolean flags to control how the context will handle the object:
detached , permanent , temporary and unique .

// Create a favorite node collection pre-initialized with some nodes
// until it gets fetched with the context
var favorites = context.getCollection(FavoriteCollectionFactory, {
 favorites: {

http://localhost:7777/d2sv-sdk/23.4.0/ 155/176

getCollection(factory, options): object

Behaves just like getObject , but looks more intuitive, if the expected result is Backbone.Collection.

getModel(factory, options): object

Behaves just like getObject , but looks more intuitive, if the expected result is Backbone.Model.

hasObject(factory, options): boolean

Returns if there is an object maintained by the specified factory.

hasCollection(factory, options): boolean

Behaves just like hasObject , but looks more intuitive, if the expected object is Backbone.Collection.

hasModel(factory, options): boolean

Behaves just like hasObject , but looks more intuitive, if the expected object is Backbone.Model.

clear(options): void

Discards all objects from the context, which are not permanent. When options.all is set to true , all
objects will be discarded.

fetch(options): Promise

Fetches all objects in the context, which are not detached. Discards all temporary objects before that.
The options will be passed to the fetch methods in factories that take care of the fetchable objects.

 models: [{type: 141}, {type: 142}]
 }
});

http://localhost:7777/d2sv-sdk/23.4.0/ 156/176

suppressFetch(): boolean

Aborts fetching started by the fetch method. You can interrupt a running fetch in order to start
another one, because the earlier result has become irrelevant. (Because a navigation got interrupted by
yet another navigation, for example.)

Error event on the context will be never triggered and the returned promise will be never resolved. Sync
event will be triggered immediately as the suppressFetch method is called to balance the earlier
triggered request event. Events on the models and and collection will be triggered eventually, as their
AJAX calls will finish.

This method does not abort the operation. It only allows another call to fetch be made and replace the
one in progress.

Properties

fetching: Promise

The promise returned by fetch during fetching or null if no fetching is in progress.

fetched: boolean

true if the most recent fetch succeeded, false if the context has not been fetched yet, or fetching is
in progress, or it failed.

error: Error

null if the most recent fetch succeeded, or fetching is in progress, or the context has not been
fetched yet, an instance of Error if the most recent fetch failed.

Events

'before:clear', context

http://localhost:7777/d2sv-sdk/23.4.0/ 157/176

The context is going to be cleared.

'clear', context

The context has been cleared.

'request', context

The context is going to be fetched.

'sync', context

Fetching the context succeeded.

'error', error, context

Fetching the context failed.

'add:factory', context, propertyName, factory

A new factory has been added to the context.

'remove:factory', context, propertyName, factory

A factory has been destroyed and will be removed from the context.

http://localhost:7777/d2sv-sdk/23.4.0/ 158/176

Context Fragment
The context fragment can be used to fetch data for a dynamically added widget, instead of fetching the
whole context, which would re-fetch data for widget created earlier.

Details

The context supports two scenarios for changing the page content:

refresh - the page (views) will be reused, only the data will be reloaded

exchange - the page will be rebuilt (current views will be destroyed and new ones will be created)
and new data wil be loaded

There is one more scenario, which you may see on the page:

grow - new content (views) will be added to the page, which needs to load a new data, but the old
data do not need to be reloaded

New views usually load the new data by ensureFetched and the context does not need to be involved
in fetching the data. However, shared components might be used to add the new content, which
depend in the context to load their data. Because only the owning view knows what part of the context
will have to be fetched, it is responsible for collecting a fragment of factories for fetching:

// Subscribe a context fragment to the context, before
// a new widget is constructed and rendered.
contextFragment = new ContextFragment(context);
// Create the widget and render it to get the new models
// added to the context and to the context fragment too.
...
// Fetch only the new models. The new widget will update
// the displayed information as it is needed.
contextFragment.fetch();
// Unsubscribe the context fragment from the context,
// when it is not needed any more.
contextFragment.destroy() // Unsubscribe the fragment.

http://localhost:7777/d2sv-sdk/23.4.0/ 159/176

No factories are removed, when a context fragment is fetched and destroyed:

operation /
flag

refresh
(fetch)

exchange (clear +
fetch)

grow (fragment fetch +
destroy)

permanent stay stay stay

normal stay drop stay

temporary drop drop stay

The fetchability of factories follows the rules which the context declared. In addition to the static rules
below, the actual fetchability is checked by the isFetchable method of the context:

method / flag fetch fragment fetch

permanent allowed allowed

normal allowed allowed

temporary N/A (*) forbidden

detached forbidden forbidden

// render a new page
context.getObject(...) // get objects from the context
context.fetch() // fetch collected factories
// work with the page <--------------------------------+
// introduce new content to the page |
new ContextFragment(context) // remember new objects |
context.getObject(...) // add other objects |
contextFragment.fetch() // load new data |
contextFragment.destroy() // stop context watching --+

http://localhost:7777/d2sv-sdk/23.4.0/ 160/176

(*) Temporary factories are removed from the context when the fetch method starts executing. It does
not make sense to discuss their fetchability.

Methods

constructor(context)

Start watching the original context for new factories.

fetch(options): Promise

Fetches all objects in the context fragment, which are fetchable by their originating context. The options
will be passed to the fetch methods in factories that take care of the fetchable objects.

clear(): void

Discards all objects from the context fragment. The context fragment remains subscribed to the context.

destroy(): void

Stops watching the original context for new factories. The context fragment will not be usable any more.

Properties

fetching: Promise?

The promise returned by fetch during fetching or null if no fetching is in progress.

fetched: boolean

true if the most recent fetch succeeded, false if the context has not been fetched yet, or fetching is
in progress, or it failed.

http://localhost:7777/d2sv-sdk/23.4.0/ 161/176

error: Error

null if the most recent fetch succeeded, or fetching is in progress, or the context has not been
fetched yet, an instance of Error if the most recent fetch failed.

Events

'request', context

The context fragment is going to be fetched. This event is triggered on the original context too. The
fetching , fetched and error properties on the original context are not modified.

'sync', context

Fetching the context fragment succeeded. This event is triggered on the original context too. The
fetching , fetched and error properties on the original context are not modified.

'error', error, context

Fetching the context fragment failed. This event is triggered on the original context too. The fetching ,
fetched and error properties on the original context are not modified.

'add:factory', context, propertyName, factory

A new factory has been added to the context fragment.

'before:clear', context

The context fragment is going to be cleared.

'clear', context

The context fragment has been cleared.

http://localhost:7777/d2sv-sdk/23.4.0/ 162/176

'destroy', context

The context fragment has been destroyed.

http://localhost:7777/d2sv-sdk/23.4.0/ 163/176

PageContext
The simplest context, which can include and fetch models and collections, but does not provide any
other functionality. If you use it with widgets, which expect changes based on their context-changing
models, you will have to handle these changes yourself.

Plugins

csui.require([
 'nuc/widgets/shortcut/shortcut.view',
 'nuc/contexts/page/page.context',
 'nuc/contexts/factories/next.node',
 'nuc/lib/marionette'
], function (ShortcutView, PageContext, NextNodeModelFactory, Marionette) {
 'use strict';

 var context = new PageContext(),
 nextNode = context.getModel(NextNodeModelFactory),

 region = new Marionette.Region({
 el: '#content'
 }),
 view = new ShortcutView({
 context: context,
 data: {
 type: 141
 }
 });

 // Perform some action if the widget triggered contextual node change
 nextNode.on('change:id', function () {
 alert('Node ID:' + nextNode.get('id'));
 });

 region.show(view);
 context.fetch();

});

http://localhost:7777/d2sv-sdk/23.4.0/ 164/176

Plugins descended from ContextPlugin (nuc/contexts/context.plugin) can be registered. They will be
constructed and stored with the context instance. They can override the constructor and the method
isFetchable(factory) .

http://localhost:7777/d2sv-sdk/23.4.0/ 165/176

CSS
Bundles and loads CSS stylesheets referred from JavaScript module dependendencies.

TODO: Write the documentation.

Load CSS bundle

Stylesheet bundles are loaded by a call to styleLoad in bundle indexes, for example:

styleLoad(require, bundleName, separateRTLCSS?)

require - the require function required for the module, where the styleLoad is going to be
called

bundleName - the name of the module bundle, for which the stylesheet will be loaded

separateRTLCSS - if the stylesheet for the RTL text-writing direction is in the same or in a separate
file (default is true)

If separateRTLCSS is true or not specified and the selected UI language requires the RTL text-writing
direction, the stylesheet name will include the suffix -rtl . The RTL stylesheet will be used instead of the
default one:

Bundle name LTR text-writing direction RTL text-writing direction

define([
 ...
], {});

require(['require', 'css'], function (require, css) {
 css.styleLoad(require, 'csui/bundles/csui-browse');
});

http://localhost:7777/d2sv-sdk/23.4.0/ 166/176

Bundle name LTR text-writing direction RTL text-writing direction

csui/bundles/csui-

browse

csui/bundles/csui-

browse.css

csui/bundles/csui-browse-

rtl.css

If separateRTLCSS is false and the selected UI language requires the RTL text-writing direction, the
default stylesheet name will be used. The default stylesheet is supposed to contain styles supporting
both LTR and RTL text-writing direction:

Bundle name LTR text-writing direction RTL text-writing direction

csui/bundles/csui-browse csui/bundles/csui-browse.css csui/bundles/csui-browse.css

http://localhost:7777/d2sv-sdk/23.4.0/ 167/176

I18n
Carries language settings and loads language modules for the selected locale.

TODO: Write the documentation.

Accept-Language in AJAX Calls

Smart UI has always set the chosen UI language to the Accept-Language header, when making AJAX
calls via Connector . It ensures a consistent language of static assets (language pack) and the data (REST
API responses). The UI language is chosen by the locale setting:

If you want to use a different locale for the data, you can set the property acceptLanguage , which will
be sent to the server instead of locale :

The values of both locale and acceptLanguage have to comply with BCP 47. They are case-insensitive
and Smart UI will normalize them to lower-case before using them for loading static assets or sending in
the Accept-Language header.

CS uses the property i18n.settings.userMetadataLanguage to support multi-lingual UI. Unfortunately,
this property does not follow BCP 47. If userMetadataLanguage is set and acceptLanguage is unset,

require(['i18n'], function (i18n) {
 console.log('locale:', i18n.settings.locale);
});

require.config({
 config: {
 i18n: {
 locale: 'en-US',
 acceptLanguage: 'en-AU'
 }
 }
});

https://tools.ietf.org/search/bcp47

http://localhost:7777/d2sv-sdk/23.4.0/ 168/176

Smart UI will convert the value of userMetadataLanguage to acceptLanguage . If both acceptLanguage
and userMetadataLanguage are unset, Smart UI will set the value of locale to acceptLanguage to stay
compatible with previous versions.

Setting acceptLanguage to null will stop Smart UI from setting the Accept-Language header in AJAX
calls:

require.config({
 config: {
 i18n: {
 locale: 'en',
 acceptLanguage: null
 }
 }
});

http://localhost:7777/d2sv-sdk/23.4.0/ 169/176

RequireJS
This document describes changes to the original RequireJS. See the RequireJS website for the original
documentation.

Changes

1. Make the pkgs configuration object mergeable.

2. Add an attribute data-csui-required to to every element added to document head.

3. Recognise rename in the configuration to implement module name mapping in addition to the
starMap for an additional module compatibility layer.

4. Return module configuration merged from the mapped original names and new ones.

5. Introduce a method moduleConfig(id) on the local require function.

pkgs mergeable

Allows calling require.config({ pkgs: ... }) multiple times to configure packages step-by-step. Kind
of misused by the original version of the mobile app to remap modules.

Attribute data-csui-required

Allows detecting all scripts and links inserted by RequireJs and the css plugin to document.head to be
able to remove them later. Used to wipe out all modules loaded from one server, before another version
can be loaded from a different server.

rename map

The RequireJS starMap can be used for remapping modules to be able to load different functionality on
different pages. It can be used to implement product-specific features, if a RequireJS library is reused in
multiple products.

https://requirejs.org/

http://localhost:7777/d2sv-sdk/23.4.0/ 170/176

Another need for module remapping comes from refactoring, which moves a module to a different
library, with or without deprecating the original module name. If a module needs to be remapped for
compatibility, which was earlier remapped for product adaptation, the two map entries will conflict.

A direct conflict means that either the compatibility mapping, or the product adaptation will not work,
depending on the order of the configuration statements:

An direct conflict means that dependencies on the original module will not be adapted, if the
adaptation maps only the new module name, because the starMap is not processed recursively:

The rename map is separate from starMap and solves the direct conflict. Modules remapped for
compatibility are called "renamed" and have to be added to the rename map. The starMap continues to
support product adapting. The module name normalisation makes use of both maps. If the rename map
is configured alone, it will work like starMap alone.

When this configuration is used:

The module names will be normalised like this:

When this configuration is used:

csui/original -> nuc/moved // keep compatibility with a moved module
csui/original -> custom/adapted // adapt a module for a new product

csui/original -> nuc/moved // keep compatibility with a moved module
nuc/moved -> custom/adapted // adapt a module for a new product

rename: csui/original -> nuc/moved

csui/original -> nuc/moved // using rename
nuc/moved // just loaded

http://localhost:7777/d2sv-sdk/23.4.0/ 171/176

The module names will be normalised like this:

When this configuration is used:

The module names will be normalised like this:

Merged module configuration

This is a feature supporting module renaming and remapping as discussed in the previous chapter.

An example of a situation:

1. The original module csui/original supported configuration.

2. The original module was adapted in a new product and the new module might need additional
configuration.

3. The original module was renamed in the library and parts of the configuration started to be set
using the new name.

An example of RequireJS configuration:

rename: csui/original -> nuc/moved
starMap: csui/original -> custom/adapted

custom/adapted // just loaded
csui/original -> custom/adapted // using starMap
nuc/moved -> custom/adapted // using rename backwards and starMap

rename: csui/original -> nuc/moved
starMap: nuc/original -> custom/adapted

custom/adapted // just loaded
csui/original -> custom/adapted // using rename backwards and starMap
nuc/moved -> custom/adapted // using starMap

http://localhost:7777/d2sv-sdk/23.4.0/ 172/176

The result of module.config() called in custom/adapted will contain an object merged from
configurations set for all three module names. Forward and backward rename map and starMap are
used to discover the other module names.

moduleConfig method

The configuration of a RequireJS module may be needed in another module. It can be used to keep
compatibility after refactoring the module tree. The functionality of require.moduleConfig is similar to
module.config , the difference is that you have to supply the module name:

rename: csui/original -> nuc/moved
starMap: csui/original -> custom/adapted

define(['require', 'module'], function (require, module) {
 // merge the old and new module configurations
 var config = _.extend({},
 require.moduleConfig('other-module'), // configuration of other module
 module.config() // configuration of this module
);
});

http://localhost:7777/d2sv-sdk/23.4.0/ 173/176

Documentum D2 Smartview SDK - 23.4.0
The D2 Smart View SDK consists of sources, binaries, documentation, and samples for -

D2 Smartview UI extension enviornment.

D2-REST services extension enviornment.

D2 plugin development enviornment.

It also includes a few tools to create and maintain a development workspace.

With the D2 Smart View SDK you can build enterprise-ready software components for Documentum D2
Smartview runtime to cater custom business needs.

Out of the box, D2 Smart View landing page looks like:

How to prepare and start with the development environment

1. Download developer tools

2. Install developer tools

http://localhost:7777/d2sv-sdk/23.4.0/ 174/176

3. Create the development workspace

4. Get familiar with SDK tools

5. Create a plugin project

6. Start coding

1. Download the developer tools for your OS:

2. Install the developer tools for your OS

JDK - JDK is required to compile Java code present within a development
workspace.
 Use JDK 17 or later.
 See https://openjdk.java.net
Maven - Apache maven is the secondary build tool used in this SDK development
workspace.
 Recommended version is 3.8.2. A different version may not be fully
compatible.
 See https://maven.apache.org
NodeJS - JavaScript VM to execute the SDK tools, build tools and to run the
development web server for UI code.
 Recommended version is 16 LTS. A different version may not be fully
compatible.
 See http://nodejs.org.
Grunt - JavaScript task runner for building and testing UI code.
 See http://gruntjs.com. Nothing to be downloaded from this URL though.

JDK - Run installer. Set the JAVA_HOME path variable to point to the JDK root
directory.
Maven - Unzip & extract to a directory. Set MAVEN_HOME environment variable
pointing to the directory.
 Update PATH variable accordingly so that Maven commands can be executed
from command-line/terminal.
NodeJS - Install the package for your OS. Set NPM_HOME path variable pointing to
the NodeJS
 installation directory. Update PATH variable so that Node & NPM commands
can be executed from
 command-line.
 It is recommended to avoid installing NodeJS under 'Program Files' as

http://localhost:7777/d2sv-sdk/23.4.0/ 175/176

3. Create the development workspace:

4. Get familiar with Workspace assistant

Check out the Workspace assistant. It's a good idea to familiarize yourself with the general aspects of
the SDK, this can be done later though.

doing that has been known to create
 problem some times.
NPM - Update the NPM module management tool to the latest version:
 npm install -g npm@latest

Grunt - Install the command line task runner client as a global NPM module
 npm install -g grunt-cli

1. Extract the SDK
2. Open a command prompt at the extracted folder

Execute batch script ws-init.bat
>ws-init.bat

It will take a while to fully initialize the workspace.
Once initialization completes successfully, the workspace assistant starts
automatically. Select "Check out documentation" option to open documentation in default
browser.

The directory where SDK was extracted becomes the root of the development workspace.
It doesn't require to run ws-init.bat inside the initialized workspace again, unless
some other instructions specifically says to do so.
If you want to run the workspace assistant anytime later, open a command
prompt/terminal at workspace root directory and run
>npm start

Select "Nothing", to terminate the workspace assitant, if wanted.

To access the documentation without the workspace assistant, you can run the following
command in a command prompt/terminal at the workspace root.
>npm run documentation

http://localhost:7777/d2sv-sdk/23.4.0/general/ws_assistant/2_00_ws_overview
http://localhost:7777/d2sv-sdk/23.4.0/general/architecture

http://localhost:7777/d2sv-sdk/23.4.0/ 176/176

5. Create a plugin project:

6. Getting started with SDK development

If you are a new SDK developer, you can check out this documentation to get started.

7. Start coding

Check out the API documentation and start coding as per business requirement.

Open command prompt at workspace root and run
>npm start

Select "Create a new plugin project" from the workspace assistant options.
Follow on-screen instruction and anser questions to create your first plugin project.
Once done, type and run-
>npm run build

Or, alternatively run the workspace assistant again and select "Build all plugins in
this workspace" option.
This will build all projects in the workspace

http://localhost:7777/d2sv-sdk/23.4.0/getting_started
http://localhost:7777/d2sv-sdk/23.4.0/api_overview

